Exploring Garmin’s IMG Format

TRE , RGN, LBL, NET, NOD & DEM

Sabevanrs 41 Lecadegbae | e | |

B LT [Lmtate |7 [C
apoc3aae i |IEET 17 G106 3 W ECH 5T5MMES
GIFN TRDT [iTERG 06 BIOITE 4D W WODD LAE CAR PARK
I T I T T T
TS ek whgh D fimA desss Siowd we0 R2BG
AEC AL I L [TSAA AEAM E10md ADO0 AE D40 G P FORRETAL T
B, D D67, WEET A8 8103 1200 BDG
AT N b e o - o R R
e
s o1 o o6z 0 [oiens [Ty Jiompinte Timtede Tim_ Totow |
0540 0L EE e e T e L sraTm oEQ FNnprom
M - J|"™® & aME H8M XD LR TENENE
Nl) R R S
B MEAC M6 1EM3 SLOT 0EQ OV LA BE B
5 ikasiem o8 Todl TMRAY & doME SIEWA BECE HUDDS IMESR
m MAF B dowd S8R TIICD CRANME N EETBSS
H e T T Ae¥d SUGP B4 2181
&8 SANFFORT AFTMIEL A W ET. T T - 1T] LECETR]
S WIVELISOMMEE ThES [-3 Lk L) B0 DUEEST AMESLWEC
“ﬁ TR M LA SIEWA BANCD HAYDOW BE)TDATCAA
&F COMITTROST L T NHE AT DD WONS AESEFATEC
77 LAST ComEd w6 IWMG ST MCD WODDS FHEFUATE
OO A WE 6 I0WR BLNE BCOACE VCTORE D MBANF
! [14 i WO 6 MW S AKCE TRTY REMLEE
Lk =& WAUTP GimsMl Bean A WeMAE T EEEE % BAL
44 CHEICH ST wicn e L
L GEEETRAR Aaddwi | Ty | L Lanads | LBL Hawe o .
e MICA 17 QME SIOMT TRCE WCTDRL ICGT DG
B EREEE 25 MiNCiRET B A e} B9 EESED ARCHE GLECIMBIT
Bi MILLOCMEON [T AT o BN pde {0ESEL) Fi
4 ComsE FLOREY I JiA08 Siavsl TFCO PesORY 1055 EBOF ER
P B A JoME 50008 TATERD BEMOP 1R4STO MR
F1 ALZER¥ORD el € o S pao EUREITL
Fa ETELECCHIE L] L) Joe Srarel Bda 1046 30 EE B4
R sl X AmeT MasM o 0a0 A DR PES]
18} LaeiEy wcE T L - BT - T B AL PR
11 BCIVELD RN SR 1w 3 W00 bl] WCE VVARY AT B W
L TR e WK T 1H0T BN WAL VVARY . TIICIARE
135 mommos] WD W Wl BOUS AR DFRCE. THAFAITID
Hiad i E L & T 1ZSEACEES

(c) N Willink 21/08/2011
If you downloaded the manual from another source it will not be up to date.

more information on www.pinns.co.uk/osm/garmin. html

Latest Revision 02/03/2015

Exploring IMG Format

TDB EQILOr 1.1 oeeeiiiiieee ettt ettt e et e ettt e e sttt e e e bbte e s eabbeeesebeees 4

Download & checkout the only tdb €ditor tO:coovuiiiiiiiiiieiiiiie et 4
INETOAUCTION .ottt ettt e et e ettt e e sttt e e e bbte e s eabaeeesebeees 4
INETOAUCTION .ottt ettt et e et e ettt e s sttt e e e bbte e s eabaeeesebaees 5

Garmin NT ..o ettt ettt e ettt e s eabt e e e sttt e s sabbeeesaabbeeenas 5

IMIG2TY P et ettt et ettt st e st e et e e sbae e saneee e 6
Garmin hEAAETSccouuiiiiiiiiiiiet ettt et ettt st et e e s e 7
RGN REAGCTeeeeiieiiie e ettt e st e e s e e sanaeeesnneeeens 7

How are all the elements (pois,polylines and polygons) Stored?..........ccceccueeereieeeeniiieeennieennn. 8
IMAAP TEVEIS...eiei ettt e ettt e e e e e ettt et e e e e e et ae s 8
SUDAIVISIONS ..ttt ettt ettt sttt et e e st e st e eeaneeesaneesaneeenas 9
Pointers in @ SUDAIVISION........eiiiiiiiiiiiiie ettt 10

Finding number of pointers for each SUbAiViSiOnccooiuiiiiiiiiiniiiie e, 11

Start of Subdivisions in RGN + &29cooiiiiiiiiiiiiee e 13
LOCKEA TOPO MAPS...cttteeiiiiiiiieie ettt e e ettt et e e e e ettt ee e e e st bt eeeeeeseaaabbeaeeeeeeennns 17
502) OO SRS PP P PTRPPRRP 18

Lbl pointers NOT directly pointing to 1bl1 label block.........c.cceciiiiiiiiiiiiiiiiiiiiic, 20
SYIMDOIS ..ttt ettt e ettt e s ettt e s bt e e ettt e e et e e eataeeas 21
More than 1 label in NETcc.ooiiiiiiiiiii ettt 21
POIS ...t ettt ettt et e e bt e bt e ettt e ehb e e e e sabeeeaeeas 22

POIS With SUDLYPES....ciiiiiiiiiee ittt ettt e e e e ettt e e e s es sttt e eeeessssasnsseeeaesesannns 22

POIS With N0 SUDLYPES ...evviiiiieiiiiiiieie et e e e e e e et aeee e e s s s enbbeeeeeeeeeennnns 22

POILLADEIS ...ttt ettt sttt et e e et e e et eeesbaeees 22

POIS With @XtENAEd LYPES ...vveeieiiiiieiiiiit ettt ettt e ettt e e eesrae s 23
POLYLINES ...ttt ettt ettt e et e et e ettt e ebbe e s bt e e sbbeeeabaeesabeeenneeas 24

o] N T TS 51 o T RSP T 24

Polylines withextended types 0 X TO0+......c.oiiiiiiiiiiiiiie et 25

Length of a polyline type 100+ DIOCKceeueiiiiiiiiiii et 25
POLYGONS ...ttt et ettt ettt e et e sae e e s et e st et eeataeenaneeenaeens 26

POLYZON LLADEIS ..ottt et e e e et e e et e e nneeas 26

Polygons with extended types 0 X 100+ooiiiiiiiiiiiie et 26

Length of a polygon type 100+ DIOCKccoeieiiiiiiiiiie e e 26
PLOttNG COOTAIMALES. ... eiiieeiieee ettt ettt ettt e et ee e ettt e e e etee e e snseee e e nbaeeesennteeesnseeeeennneeas 27

PLOLENG POIS ...ttt ettt e e ettt e e ettt e e ettt e e e st ee e eneteeeeenneeas 27
PLOtHNG POLYIINESeeeeeeiie ettt ettt e e ettt e e et e e et e e e enat e e eneaeeeenneeeas 28

the first DILSIIEAM DYLE....ceeiuiiiiiiiiiie ittt ettt ettt e e et e e e srae s 28

The ‘official” algOTTthIM:oiiiiiiiiiiiii et 29

Starting to Parse DILSITEAIMIS. ...cceruuttteriiiiieeiiitte e ettt ettt e ettt e et ee e ettt e e sttt e e sabbbeeessbbeeeesnraeeas 31

Plotting Routable POLYIINEScc.ueiiiiiiiiiiiiiii ettt e 33
Left_shifting CoOrdiNates........c..eeiiiiiieiiiiiiie ettt ettt et e st e et e e s eabaee e 34
Left_shifting CoOrdiNates...........eeiiiiiieiiiiiie ettt ettt et e st e et e e s earaee e 34

BitS_PEI_COOTA.eiiiiiiiiiie ittt ettt ettt e ettt e st e ettt et e e e eas 34

Lot SRITIE . .ceeeietie et ettt et e et e e st e e e srae s 34
PLOttNG POLYZOMS ...ttt ettt ettt et e st e e 36
Special cases N @ DILSIIAIMNceeiiutitiriiiie ittt ettt e et e e s eeesabaeees 36

Exploring IMG Format 2

TR 7 ettt e e e e e e e e e e e et e e e et e e e e e e e e e e e e e e e e e e ————————— 40
TRES ..ottt ettt et e e e et e e e e e e e e e e e e e e et a—————————— 41
TRIED ettt ettt e e e e e e e et e e e e et e e e et et e e e e e e e e e e e e et ————————— 41
INET SUDTIIE .ottt ettt e et aaaans 42
A\ SRR 42
Length of RIZRWAYS ...cooiiiiiiiiiiie ettt e 43
N[0 B] 115 51 (=R 44
J\\(©) 5 2 ORI 44

| L0 1117 PO RTTION 45

S T) 1 A SRR 45
DiIrection COOTAINALES.coovvviiiieeeeeeeeeieieeee e e e e ee ettt eee e e e e eeeeeeraaeeeeeeeeesesarsnseeeeeeeenes 45
INOAES BYLESeeeee ittt ettt e ettt e e ettt e e ettt e e e net e e e e nee e e e eesateeeennaeeeeanneeas 45

S T N~ S S SRR 45

o) (S0 5 (7 1 1< PPN 46
TADIE A oottt e et ettt aeett ittt ——————————arraria, 46
INODD 2 e ———————————————————————————tatt ittt aaaeaes 47
DEM SUDTILE ...t e 49
Creating IMG fIlEScoeiieiii ettt e ettt e e et e e et ae e e e enae e e eneteeeenaeeeas 50
LA O] TSR 50
EXtra POIL data SEICAIMoovviiiiieeeeeeeieeiiiiieeeeeee et e ee e e e e e eeeeeeeeeeeesraaeeeeeeeseeeesraneeeenns 51

Exploring IMG Format 3

TDB Editor 1.1

Download & checkout the only tdb editor to:

lock & unlock your Mapsource/Basecamp maps.

restore Mapsource when it crashes

rename any mapsource/basecamp name

change mapnames so they are easier to read on your gps

Lock & Unlock your own maps

add/remove routable option

force direct routing when it doesn't work

add/remove profile option.

add or edit copyright description when creating your own maps

create or remove 'Reduced map window for printing' and other (printing or viewing)
messages

disable any form of printing.
add or resize Restricted Window View

quickly identify & edit mapnames, useful when you want to isolate a particular IMG file.

g
"%.'_' 3 F{

- il
R
. L LR A
N%

- ks :; ; .. .Z ! o : r
3%:&" PR & CeA R
R SRR PN L Tkl e i ol oy _
= "{i ‘h ":'-l- “'-r‘l"-r F T :"'
5

4 Faw :IT;r :If“-r :'1-“4-'. . ’5 A

o1 pA A b T e

/ A) The -=.=..- ":rdli:l'.-
) _"*..‘"'_ < [P St
o y !

N7

.

b O el R
ity
At ar B m

Introduction

For anyone who wants to delve more deeply into the IMG structure John Mechalas (JM)* ‘Garmins
IMG File Format’ is a must read. We all owe a great deal to the author of cgpsmapper without
whom the booklet could not have existed.

Apart from this excellent document there seems to be nothing else available. Unfortunately, there
are some crucial errors in the JM’s description, making it more even more challenging.

Our aim is to tie up some loose ends and use frequent examples to make the format more accessible.
However, the IMG structure may to some still be a steep learning curve.

In this ongoing document I intend to focus on how to access and plot poi, polyline and polygon
data within an IMG file. From the picture in the title you can see that, my humble efforts after 3
years of frustration, have finally been successful. There were many occasions when I felt like giving
up as I was getting nowhere really fast.

IMG Explorer shows pointers and coordinates held in an IMG file and can be downloaded on
request only.

We would welcome any additional information or queries using email address found at :
www.pinns.co.uk/osm/

Garmin NT

At present this document does not address
Garmin’s new NT format — more information
about this subfile can be found at openstreetmap
GMP wiki . Suffice it to say, the img structure of
pointers is not much different and the offsets are
calculated differently. With active routing
additional information is attached to each line.
Its routing compaction is also more efficient.

NT caters for postcode searches and routing using i .
multiple highway lanes.
For this reason, there doesn't appear to be a viable incentive to reverse engineer this format.

IMG Explorer can ,however, extract all tiles contained in the file and gives the starting address for
each tile. The LBL contains the ref names of tiles followed by pointers to each tile taken from the
end of 1bl1,

Exploring IMG Format 5

IMG2TYP

I’ve written this GUI to read IMG files and list all element types found in TRE so that they can be
saved as a TYP file. Check out on youtube

TYPWiz

Use TYPWiz in connection with img2typ and you are well on your way to changing the rather drab
TYP files which accompany CN 2012-2015 maps ! Check out on Youtube

e
RN y 2

_'J FO.| 2835 Code 1252 » | Crested 26820121558

)
(x1600 Oc1700] i 0e01 ek

Soelowed Lol Poygons ||| Lines ||| Pois |

== R EEEE

FI:I: Code 1252 + | Crested 26820121558
PiD: 1 Header AFE - . ey

=

2002 2003

> JIEES
) fe]im

ociowo ool | + M.
I 2001 2002 2003 2004 2D06 2D07 TID09
I L | i
G = o (1

™)
38 Y0 i®

g
g0

2F09

E.
=i

o 5| B i@ B
3

g
+ | f£|B

g
2 i
Y]

»

i Hm| 4@ =] 3o ¢
e
B

R
B
3
R
b~
3
g+ W idv P& B
y

:
3|
:
:
g

6411 6415 BSO1

Garmin headers

An IMG file consists of several blocks, or sub files, each doing a specific job:

TRE, RGN, LBL , NET , NOD

The one we’re particularly interested in is the RGN subfile as we want to establish how all

highways, polygons and points of interests are plotted.

RGN header

In the RGN subfile we find the essential data for plotting our elements: coordinates, ,length of
highways, number of sides in each polygon etc. The header looks like this:

RGN Offset | RGN Header BYTES
00 Header Length
02 GARMIN RGN 4
15 Pointer to beginning of RGN1 data, ie first subdivision to include 4
possible POIs,Indexed POIs,Polylines or Polygons or first map level
19 Length of this block 4
1D Pointer to RGN2 data block,contains extended polygons with types 0 x 4
100+ ; for undocumented details about its structure see further
21 Length of this block 4
39 Pointer to RGN3 data block ; this block contains extended polylines 4
with types 0 x 100+ ; for undocumented details about its structure see
further
3D Length of this block 4
55 Pointer to RGN4 block containing extended POlIs ; for undocumented 4
details about its structure see further
59 Length of this block 4
65 FF
66 3F (7F) (03)
67 0
68 20 3f f7 ff 3f 4
6D 4
75 Block or length 4
79 0x E3 (E5)3f
Exploring IMG Format 7

How are all the elements (pois,polylines and polygons) stored?

You could imagine that, as maps rely on individual nodes, pois are plotted first, followed by the
polygons etc. Yes and no. To understand how they are stored we need to look at :

1) maplevels

2) subdivisions.

Map levels

To save space, Garmin opted for a unique solution using maplevels and subdivisions.

To enable any kind of zooming, Garmin has decided to plot data in ‘zoom chunks’; the deeper the
zoom the more information it contains, ie the more highways etc are plotted.

At the lowest zoom, very few pois, if any and only a few highways are plotted - each created using
only a limited number of nodes,thus making them look straighter and more ragged .

These zoom levels are called maplevels ,each with subdivisions.

Maplevel 1 Subdivision
Subdivision
Maplevel 2 Subdivision
Subdivision
Subdivision
Maplevel 3 Subdivision

Regard map levels as groups of subdivisions .
Each map level is given a separate data block telling you:
1) what elements to plot

2) at what resolution /degrees of accuracy

3) how many subdivisions it has grouped together — sometimes none!

Exploring IMG Format

Subdivisions

Before we retrieve these maplevel blocks, let’s explore the nitty gritty of sublevels.

Each subdivision contains data visible at that level. Some subdivisions can share data with others.
The main highways are often plotted at different zoom levels and hence at a different resolution/
accuracy, whereas hardly any pois are plotted at the lowest level when you zoom out.

So there is a certain amount of doubling up, despite Garmin’s main aim to reduce its IMG file size.

How are these subdivisions constructed?

Consider the following:
1) POIs don’t need as much data as highways; in fact they only need one node
2) Not all highways are the same length

3) Polygons are not the same shape and their number of nodes can vary too.

Unfortunately, because the pois and highways data are not the same lengths, we need to know
where the starting points are for each element data block .

Ideal situation : every object the same length:

Poi l

Poi 2

Polyline 1

Polyline 2

Polygon 1

Polygon 2

Garmin’s approach:

Polygonl

Polygon2

Exploring IMG Format 9

You could not have the ‘ideal’ situation unless you limit the number of nodes for each highway or
polygon to say 1000. That would be such a waste if the lines are short etc.

Note :The maximum length of a subdivision is finite — the exact length is not clear - , hence the
existence of numerous subdivisions depending on the amount of data within a maplevel.

Pointers in a subdivision

As a compromise, Garmin decided to plot all pois in a subdivision in one chunk, followed by
highways, followed by polygons.

To make sure we know where each element chuck starts we need to be given some pointers. These
pointers are not saved somewhere else but are given just before the start of a chunk. More
specifically, all pointers are given before the first chunk appears, at the beginning of each
subdivision and are 2 bytes long :

| Pointer to chunk2 | Pointer to chunk 3 | Chunk | | Chunk 2 | Chunk 3

You would expect:

Pointer to Pointer to Pointer to Chunk 1 Chunk?2 Chunk3
chunk1 chunk 2 chunk 3

To save space we don’t need a pointer to the first element as it follows after the pointers,if any.
We can skip the pointer to chunk]1 ;as each pointer is 2 bytes long , we know where chunk 1 starts
(6 bytes from the offset).

Example:

Pointer to chunk2 | Pointer to chunk 3 Chunk 1 POIs | Chunk 2 Chunk 3
Polylines Polygons

So now we know the start of each element chunk.
There are 2 problems with this solution:

1) we need to know how many pointers there are in each subdivision
2) we need to know the length of each subdivision

If we didn’t know how many pointers there were, we wouldn’t know where our first element
chunk started — for an answer see later .

Again , supposing we knew the number of pointers, we could find the first element block, but we

wouldn’t know where the next subdivision started, ie with its pointers

We can’t tell, unless the number of pointers & the start of each subdivision is stored elsewhere in
the IMG. They are not found in the RGN but in another subfile, called the TRE - see below

Exploring IMG Format 10

Finding number of pointers for each subdivision

The information is found in the TRE subfile, specifically at an offset found at TRE + &29, or
&2429: ie offset value = &1BF . Add this to &2400.

The dark blue line points to blocks of 16 bytes, each block representing a subdivision containing a
number of elements.

The first 3 numbers indicate offsets in the RGN (in pink) , the fourth number of each block of 16
bytes tells you what elements you can find each map level , ie pois and or highways etc, underlined
in light blue — ie the first map level = 0 ,second CO , then CO ,DO,DO .

2400 BC OO0 47 41 52 4D 49 4F 30 54 52 45 0L 00 DB 07 L-GARMIN TRE e
34168 67 i%8 43 £ B8R 08 48 4 4D B FDH AF i3 24 BA 48 L] -lgMcg@lsic
7420 FP A7 01 OO0 00 18 0O 00 OO0 BF 0Ol OO 00 & 00 090 9§ -~f-++zg --p--
2430 00 21 02 00 00 02 0O 00 Op 0F 90 90 00 90 cfqeeeecbeceln
24840 A 00 OO0 O1 03 1L 0o o1 Op 0 o0 06 i1c %0 - Ly o
2450 @ G0 Q2 09 OO QO ©0 Q90 5B 02 id 90 00 M -q-----Ly-+---
2460 b2 68 60 00 OO 06 2R 062 0D 60 A5 ad ad 43 M0 qo--oey e
2570 i lu} oo oo uli) IE il L-F e oo oD 00 (m[a] = o2 Lakr] (108 siwa b @ e i."|
1480 S8 00 00 OO0 OD OO0 OF O OD 00 C& 0§ O OO0 OB 00 [----==--Eq -
2290 b0 90 O4 OO 02 0O 00 00 OO0 00 Bl 10 4h 0QE - o BRI - 1 |
%R0 g4 EF BQ OE D@ EF BO WE DE FF O OF 0F 00 00 LYTRATEREycce-s
2480 Do G0 G0 0O OO 00 0O G0 O O 0D O IO LGS R | Soresene s open
FE] B3 T4 T2 €3 £5 74 4D &1 TH 20 A1 4&F 26 4% &F ScreecMap and oo
2400 GE T4 T3 B9 2 T5 4 &F VI T3 00 VT 77 NI ACribUTOrS W . O
285D TO B5 EBE T3 T4 T2 €5 65 74 6D 61 TG 2E PaRSTrasTmAR, aXg
28¥0 00 4D £1 70 20 €4 %1 T4 £1 20 £C &6 €3 ‘Map data licens
2500 65 E4 20 75 EE &4 %5 Td 20 43 T2 &% &l wd under Creaciv
2510 65 20 43 E&F &0 &0 &F GE 73 XM 41 T4 T4 &= CoEmans RETEiD
4] T T4 &4 &F EFE 246 #23 &8 &1 T &8 41 é&C ution ShareRiife
2530 0 3¢ IE 30 00 63 T4 T4 VO IR EF EFT €3 2.0-htcp:s/forea
2540 T4 €9 T6& 65 €3 6F €D 6D 6F GE T3 2E &F Eivessmmane, sregf
2880 BC €5 £3 E5 EFE 73 £S5 TR ¥ &2 79 0 73 licemman Ey-an/2
2560 JE 20 IF O AD EGL 70 PO 62 T2 65 EL 7 O/ -MBE CERATED
2570 7 6% T4 68 20 60 €B 67 6D 61 B 2D 72 with mkgmap-r191
2580 5 20 29 20 20 20 20 06 50 F: 6&6F &7 & a ‘Frogram
75%0 TZ 65 6C 65 €1 73 £5 64 20 T5 6E 64 65 released under T
5RO €8 €5 20 &7 50 &4C 00 AS OF 01 OO 04 10 he CcRL-_@ 44 b
2580 12 @1 00 03 34 OL 00 91 15 01 o 00 12 oL g0 o0 fF a4 - o+ =
25c0 Pl 00 D9 09 EA.FD D2 13 24 01 ep g1 gg.nr on BE - -gpbis £ -
25D0 Q0_00 CO 00 Ba FD_ P2 43 2402 mo 02 00 0300 T - A-Ebise Lg
23T0 Gy 00 €O 00 BA FD DZ 13 24 06 B0 05 00 04 00 T8 -4 Bl ls-g| 4 .o
M A o [-,

25FD p1 00 Dd O¢ Bh FD D2 13 24 15 80 14 00 95 00 3 -0 -Sgdlsteq -] -1
2600 m BE" oo em FD P2 13 34 54 M3 4D 00 08 A0 L ¢ oedjdllsTen -k
2610 s 00 DT oo ea FD D2 13 2% 4D o1 34 oL E2 14 00 [Oo-Epdilsmt el
2620 L0 29 0O OO0 SA 00 00 52 00 00 12 01 02 12 g1 B §--:--B--§ 1 =

Let’s examine the bytes highlighted in blue.

Exploring IMG Format 11

The table below shows you what these numbers mean:

code pois Indexes | polylines | polygons | Pointers in
pois RGN

subdivision
10 \ 0
20 \ 0
40 v 0
80 \ 0
C0 \ \ 1
DO \ \ \ 2
EO0 \ \ \ 2
FO \ \ \ \ 3

Notice that the last subdivision contains all the elements (&FO) and so we need (4-1) 3 pointers.

Have a look at the picture below; you can see the RGN subfile starts at CO0 .

Offset &15 (&C15) (4 bytes) always points to the start of the first subdivision chunk , ie it starts at
7D (C00+7D) .

This number is underlined in blue.

cob b 06 47 41 82 4b 4% 4F 20 B2 47 4F 01 00 DR 07) -GARMIM REN -Oe
clo oa 14 DA 38 FL] 3 u] oo og 24 il oQ oo 21 o8 o0 u|35 | el bt i
cao 00 00 00 OO0 OO0 OO0 OO ©O OO OO DO DO OO0 OO0 @0 QD -c-ec-eeeec-eee-
) oo 00 0O 0O 0O 00 @0 00 00 BL 06 OO OO0 OO 00 00 =

c40 og g 1]u] og u]u] o0g o] ufu] ag oo ulu} oo oo o0 o0 a0 K

C50 D0 D0 00 OO OO0 Bl D06 OO0 OO0 OO OO OO OD O0D OO0 OO0 -

CED 00 0O 0O 0O OO 0O @0 0O 00 OO OO OO OO0 OO ©0 0D -

c70 00 OO0 00 OO 0O OO OO OO OO OO0 OO OO OO0 28 00 3%

cao 01 64 00 0O B0 ESX EF Bp_ FF 17 E4 CF 00 BN JA_O0

ce0 W4 EFF OF 12 00 00 B0 EE FF DE FE OB 64 00 OO0 &0

CRO &2 FF 2A 0o 17 2Cc 00 00 00 EC FE €1 FF OC 24 F9

CRO -t an 05 bDa Fi bDa iF Fs co a7 n}-] 16 oo oo] o1

Now look at C7D : underlined in green are 2 pointers , 28 00 and 35 01 — each pointer is always 2
bytes long .

Next, underlined in yellow we find some pois, ie the first one is 64 00 00 80 SE FF BD FF 17 —
more later.

Question: How do I know there are only two (green) pointers? Why is 64 00 not a pointer?

We know , because in TRE where the pointers are kept, we found this subdivision to contain &D0O
types of elements , giving us 3 elements and hence 2 pointers.

Exploring IMG Format 12

Start of Subdivisions in RGN + &29

The first 3 bytes show pointers to a subdivision in the RGN file. Remember to add the offset found
at RGN + &15 to each of these values.

2580 1z |01 |oo |02 |14 |01 (o0 |01 |16 D1 |00 |00 |18 |01 |O0 |00 |1
25C0 00 00 0O OO B8A_FD D2 13 24 01 80 0l 00 0200 00 -
2500 PO 00 CO 00D 82 FD D2 13 24 02 80 02 00 03 00 ‘€7
25E0 0Q_Qg CO OO0 BA FD DZ? 13 2% 06 80 05 OO UF 00 SB
25F0 01 gg DO o0 8A FD D2 13 24 15 80 14 00 OS5 00 12
2600 04 00 DO 00 BA FD D2 13 24 S4 80 4D 00 06 00 C8
2610 08 00 DO 00 8A FD D2 13 24 4D 81 34 01 EB 14 00 [
2620 0o 123 o0 |0g 3% |00 60 |52 |60 | D0 |12 |0k 02 (12 | |07 |-
subdivision Offset Type of Number of Zoom level | Real map
Data Pointers in Levels
zoom chunk

0 0000000r 0 0 0 Al 5

1 0000000r 0 Co 2-1)=1 B1 4

2 67 00 00 or &67 Co 2-1)=1 Cl1 3

3 9b 01 00 or &19b DO B-1)=2 D1 2

4 12 04 00 or &412 DO B-1)=2 El 1

5 C8 08 00 or &8C8 DO B-1)=2 E2

6 etc etc etc F1 0

7 etc F2

In our example, we should find a new subdivision at offset 67, ie RGN+ &7D + &67
The next new subdivision is at RGN+ &7d + &19B etc

We have named the levels A — F for the sake of clarity .
We can see that zoom level ‘E’ has 2 pointers, and zoom level F has 5 pointers , remember the
above found sequence: 1,1,1,1,2,5

Important: The subdivisions in all mapevels apart from the last one have 16 bytes; all subdivisions
in the last level, in our case ‘F’, have only 14 bytes.

To obtain the address for each subdivision we add the offset to (RGN + pointer found in

(RGN+&15)) .

Example: in our case subdivision 5 has an offset of &8C8 . Supposing RGN starts at &E0O and the
offset pointer found at EOO+&15 points to &7D
This subdivision, therefore, is found at :&8C8 + &E00 + &7D

Note: the size of a subdivision appears to be a critical; perhaps that is why IMGs created using
cgpsmapper seem to include a subdivision for almost every highway!

Exploring IMG Format

13

Grouping subdivisions into map levels

We mentioned earlier that maplevels are groups of subdivisions. If only we could find which
subgroups belonged to which maplevel . Fortunately we can, but NOT in the RGN subfile.

The information is found in TRE offset O x 21 .

5,F,1,0,
It contains information about maplevels, not where they are, 4,10,1,0,
but how many there are and also how many subdivisions 3,12,11,0,
each map level has and also its resolution(bits_per_coord). 2.14.1,0,

1,16,2,0,
It doesn’t actually give you pointers to an address in the RGN 0,18,3.0,
but the 3rd column (green) indicates the number of subdivisions

in each maplevel.

So we can see that map level 6 starts at subdivision 7

maplevel subdivision

1 1
2 2
3 3
4 4
5 5

6
6 7

8

9

Exploring IMG Format

Below, an IMG file with 10 subdivisions and maplevels 0 to 5. Maplevels 4 & 5 both have 3
subdivisions. Maplevel 0 contains no elements, Maplevel 1 only polylines (40) etc.

Subsdvisson 01 15F B Coond 22 W sngle r Faig v Poldres W Polgona
:mlxm.:.lzh:usm1 lsnm:m e o | ophite_| T T ¥
i 5 ok i 2422 S4512%04 SO TEIGAS] 1202 OOCO
X 200000 o0 3450801 ;0.1'11}0.'-‘ 428 3253093 S0.TiBEZYS 2F1T £0C0
: m““m““ s e 2434 SIAEIMMNY SOTES2BD1 4000 B 040
; WOSEY FO 3457635 BO.T1061E 3L JebTegg RATHANT 2T coce
i WS Pl 3450954 ;ll 71902 445 AT ATHNE e 150

L L . 2aaE -34ECTSE4 SOTINDAE 12T 190
: ;?’2;23 E:' ::;'?;J'; ::-::;i‘:'; ST AT STIEM 122 280
B 480 -HERSHEE MTIMTT 1@ X0
5 003618 FQ -24589954 50T11302 o
: S B At BLTiiae ;:u! ;:I.IF."BG[II SOT20T4X) BaF 0. ;
fodr_ | Type | Loogeade | Lattude | LBL | hName beaream -
2840 oe -1ABSELDS BOTITEE 008D 210013
2689 1] ~3 40BN 50THENS 150 E43C0435
2001 18 -14BBITS4 BO.7ISS08 2AD 1055
D oa JATITEXT SOTHOOET 3FOD 20ENT
;L &5 -24BEEIEY SOTI450T 540 21450
2BFL W 3ASEZXX BOTI4TIE AN1D 2515018
and o5 «34660162 50714807 BDO IUFTERX
T nE -14BB02 50714850 BEOD 4 124 SHFE
ana i} -A4ETOETS 507447 BBA APIAACEA
- = g Fir) 1] -2 4658004 SOTIESST BOO 12485
| ' Mzrs. 29 14615847 EOTIZ4ED OO0 223300
¥ COUNTRYASC - i 1] =3 40THIG4 SOTI806T C50 1017
A CLYST 5T MARY T F] -J4RTEMT SOTINMED 00O TIADNE
14 SOWTON INDUSTRIAL ESTATE £ e 08 AT2EME S0THOT4E DAD 220401
17 STAFF FARMIND s 07 S 4BASSS SOTIESIZ EFO SIEBIEAF T
11 CLYET ET MARY POST OFFICE ‘ (11 | "
ik : -
u?: IE:I.TETEES Adar_ | Type | Longtude | Lattude | LBL | Name | -
X 88 ETT) AaeLe L0770l oo £32300F0
S DOSTA COFFEE L] 4F ~34G2THE SO.T19TE 000 TAZFA4COEs
54 CWERFLOW CLE PRER A8 2 3452067 5072450 000 SIIDECEZ
11 TRAVELCCSE neE 5 AASIY SMTES iB40 EX 14 40F
ENG 10 el 24 -HASITH SeTHESe Do0 B0EH A
HRELEENEE MEI 12 -d4gEgte EO.TI40NS 000 CHMLAETN
88 WIARNE AND) SPENCERS 3B & SJ453481 SOTIEATR Q00 S HECER 4
a2 ExETER 20C =0 3453998 SBTIZIEY 000 1E12 T4BF T
8 E3 TP prall 2 A4TATEY 01 Q00 32 B0 &D D
#F SAETER SEFVICES 4 LES =3AG6058 SOTIZE0 000 LRERSFL
18 THE CAT AND FOOLE 3288 26 -34E2838 EOTITES4 1120 15 43 FCEF |
B8 THE BLUE BALL L AS00 SOTIEMD 000 B0
{1 THE HALF WIOCA 328D C -HABETHE SOTI4BT 1400 T4 58 T4 3T
B0 ST AND SOWTON FRET GEEAT WESTERN - 3281 L] 3483054 SOTIEREY 24D T1IDs3EA

Highlighted are the contents of subdivision 119F at maplevel 4 .
Notice FO meaning pois,polylines and polygons. The creamy list contains all the pois and indexed
pois, blue polylines and purple polygons,plotted below including nodes.

,\..-.-.
a

—

9

‘the RGN block and beyond’

So, now we know how many map levels there are, but we still don’t know how long the last map
level block in the RGN is.

Fortunately, Garmin gives us the size of the RGN block, ie from the first subdivision containing
pointers and pol/highway/polygon data, to the end of the last one.

This is found at RGN + &2D

Now, interestingly there is some special data BEYOND this block not documented by Mechalas.

So, in addition to the subdivisions mentioned above, the RGN contains other chunks of data found
at pointers beyond &15.

Offset in RGN bytes
1d pointer 4
21 Length of block 4
39 Pointer to block 4
3d Length of block 4
55 Pointer to block 4

Some imgs store highways with types & 100+ in the ‘green’ block . These types are used to perform
overlays ; this in theory ensures that certain highways,ie bridges, when given types &100+, acquire
the highest draw order and can overlap say Motorways. This, for some reason does not always
happen. More later. — see Polylines

Orange block is reserved for polygons with types &100+ - see Polygons.

Exploring IMG Format 16

Locked TOPO maps

You may find that these locked maps do not display the word ‘Garmin’ in a hex editor. If so, data
needs to be unscrambled. Find the first hex number and use the XOR function , ‘xorring’ every byte
by the first byte found. This will , ofcourse, still keep the file locked, but at least it’s readable.

Locked TOPO maps have the subdivisions pointers in the TRE encrypted.
(For those in the know, bytes &24 - &27 are used to unscramble the zoom level chunk and replaced
with new values)

This means you need to guess where each zoom level chunk starts and ends in the RGN. This RGN
data is itself not encrypted, so you can still read the first RGN map level chunk, including its
pointers, however you have no idea where it ends.

The problem is that pointers could be read as POIs etc and pois can be mistaken for polylines.
However, you could in theory when parsing , build in, best fit scenarios to check if the next piece of
data is a pointer, a POI or a polyline given the fact that coordinates couldn’t suddenly escape the
given boundaries.

If an IMG file contains pois,polylines or polygons with extended types, ie 0x100+ (see below) ,

then these can be read and plotted without any problems. Even pointers to different subdivisions
remain unscrambled — see TRE7.

Exploring IMG Format 17

LBL

Where are all the names of streets,pois etc kept?

They are stored in the LBL subfile. However when you examine it, you more than likely won’t
recognize any labels ,as they are all encrypted.

Lets examine a POI data stream found in a RGN zoom level

46 DF 00 00 49 FF BB FF 02

The first and last ‘green’ byte denote type and subtype , so this POI’s type is 4602

The next three yellow bytes DF 00 00 are and offset in LBL. , ore more precisely in LBL1 which is
an offset from the start of the LBL subfile.

However, bits 7 & 8 in the ‘third byte’ are reserved for something else:

Sometimes the third byte is 80, which implies that it is also found in the NET subfile if it’s a
highway. More importantly, if the third byte is a 80,40 C0 ,82,C2 etc then the pointer DOES NOT
point to an offset from the beginning of the Ibl1 labels/names block. Instead, it points to a different

block where other information is found, including a pointer to the label 1bl1 block — more later

For our purpose, we could just look at the first two bytes (you also need to check if bits 1 to 6 are
set in the third byte - only used if labels are found a long way from the beginning of this block).

It tells me that the name of the poi is found at offset 0O0ODF (ie &DF) . The other 4 bytes following
the ‘yellow block’ provide the x and y coordinates.

However, it is not an offset starting from the beginning of the LBL subfile.
Instead, it is an offset from where the label block within the LBL starts ; the start of this label
block is defined in LBL + &15 or LBLI.

Each name in the label block ends with 00 if it’s not encoded.

Let’s have a look at an example:

1500 4 a0 17 %1 L3 0 49 4E 20 < 4C 01 oo o2 A CGRRMIN ILBL i
1410 07 14 oC 2 1 D1 00 Q0 09 27 0o 00 00 06 FE +ffc4R —&
1420 00 00 o0 a0 m g o 03 Qo FB L.t -
1430 oo o0 00 05 00 00 00 00 FB 00 00 |

1440 00 00 00 00 00 00 00 FB OD QO 00 00 | ---- -2

1450 00 04 00 bo 00 00 FR 00 00 00 00 OO0 OO o L]

1450 00 00 OO FE OO0 00 OO0 OO0 00 0O 04 00 o R
147 o8 0o PR G0 00 00 G0 00 00 O3 00 00 00] L

1480 FB 00 0000 oD OO 00 O0 06 00 OO OO OO0 OO B s e
1490 og] o0g 1] el u] a0 o o0 oo ra oo | T
1440 D 00 03 00 00 O0D 00 00 E4 or 00 e .
1480 4 ulu] {a]a) aD oo {a]4) n] A 0o o lu] ul a oo A]

14C0 0o)0 00 44 65 66 61 75 6C T4 20 73 6F - -DEfAuUlE SOET
40D (n] Q E"_.;__;; Ij; "5;'_ Fd -3 o a4 20 FF 41 23 c7 48 13 'i‘&‘:.';i]J ','-:t$§:‘-!'
14E0 40 30 90 €5 3B 31 44 53 84 15 07 40 ©0 16 QodeiD 5.5 ediy
1450 BB 23 €7 48 13 40 03 0l 00 00 Q0 00 ©00 00 00 «<ARCHIEL ------.
1500 00 of OO0 00 OO OO 00 OO0 00 00 OO0 OO0 OO GO0 00 Qb

Exploring IMG Format 18

We know all label data starts at offset &15 from the beginning of the LBL subfile.
Strangely, it points to 00 (LBL + &D1). Add 1 and you get the sequence OC F5 4E 51

When you cross-check in the right column, below Default sort, it just shows gobbledy gook.
Let me tell you that all the values underlined in green read :’COUNTRY’

It looks as if the word is zipped in some way and most likely 6 bit encoding has been used.

First you need to change each of the 4 bytes into a binary format of zeros and ones . We don’t
know if it’s just 4 bytes, it could be more — see later.

In basic this would be:

For n = 7 to 0 step -1

If (byte and 2”"n) = 2 "“n then string=string+”1” else

string=string+”0"”

Next

Do this for each byte until you get a string which begins like this :
000011001111010101001110..........

Now split them into chunks of 6, as this is how most of the IMGs are encoded.
000011 001111 010101 001110

Chunk1:00 0011

Read from right to left and you get:

11000 or 220+ 2~ 1+ 0+ 0+ 0 =3 which is the third letter ie ‘C’

Chunk2:00 1111
Read from right to left and you get:
111000 or 270 + 271 +27 2 +273+ 0+ 0 = 15 which is the 15th letter, ie ‘O’

(The reason why we had to add 1 was because in our example the offset (+ 1) was given in the
Country records offset at Ib + 1F- see further)

How do we know we’ve come to the end of a word? Garmin have though of this: if the 6 bit number

is > &2f then you’ve reached the end of your label. The next label starts in the next byte, so any
superfluous bits are just discarded and not used as the beginning of the next word.

Exploring IMG Format 19

Lbl pointers NOT directly pointing to Ibl1 label block

Pointers are always 3 bytes, but sometimes the third byte ends in 80,82,C0,C6 etc

If bit 7 of the third byte is set then your bl label refers to an offset in NET1 where you can find a 3

byte pointer to LBL1. Remember : Pointer = 1* byte + 2™ byte + (3" byte) mod 32
Netl starts at offset 0x15 from the beginning of the NET subfile.

Example: 60 00 C1

60 00 01 (&C1 mod 32) points to offset &010060 from the NET1 block. Here we will find a

pointer to the main label block. Bit 7 of this byte may also be set! So, pointer NET1 Bytel+ NET1

byte + (NET1 byte 3) mod 32 should point to somewhere in LBL1, even if it is a blank label.

There are several offsets/pointers found in the LBL header :

LBL Offset size
1F Country
2D Region
3B City
49
57 POI
64
72 ZIP Post Codes
80 Highway
8E Exit
9C Highway data
1300 €4 00 47 41 52 4D 43 4E 20 4C 42 4C 01 00 DB 07 K -GA|
1410 07 17 10 03 13 DI O0 OO0 0D 87 00 00 00 00 05 S& |}t
1420 E. o0 00 03 OO0 OO0 OO 03 00 OO0 OD OO0 OO0 SB 01 QO LR
1430 00 00 OO SB 0 00 00 OS5 t AT
1440 oo &0 01 20 00 00 o0 00 ity 1
1450 61 o0 o0 B8 00 00 00 o0 d--
1460 B0 00 00 00 04 00 00 00 M-
1470 OO0 00 0% 00 OO0 00 00 00 -°h
Lz} 1580 DE 00 00 0D 00 00 &B 01 Xk
1490 oo 00 00 [0OO0 68 01 og 00 o
14R0 oo 00 E4 |04 oo 00 00 80 =k
1480 68 01 00 00 00 00 00 o000 A-
L |14co 75 6C T4 .20 73 EF T2 T4 -
I f14D0 D4 20 FF| 38 55 CO 24 E3 - §d
14E0 4F 15 89 40 BC 26 3F SC 44
14F0Q FC 491 23] CT 98 13 49 30 ,HQI'L
1500 i5 20 O7 40 €0 16 8B 30 AB1D
1510 41 €3 8F &8 70 93 3C ES5 MM
1520 51 5C 68h02 14 51 07 1n lsaT
1530 DO 14 E4 D4 48 51 54 34 psk)
1540 10 56 1C 3 02 10 TO FO fest
1550 g1 00 00 | 10 @0 ©0 0Ol 40 TQ"E
1560 i18 00 0D ©0 Q0O QU OO0 0O r
1570 00 OO0 OO OO OO OO0 OO 00

20

Look at LBL + 1F , underlined in blue: it reads 58 01 - so offset is &158 from LBL, ie &1558

There you will find underlined in green a 3 byte pointer : 01 00 00, ie 1 and this is our ‘elusive’
offset.

There are only 3 bytes to look at (see green 03 at &1422) . If there were 2 more regions then the
length (03) will be multiples of 3, ie 06.

Next, there appears to be some more pointers at 155B, underlined in yellow.
This is a yellow 5 byte chunk, 10 00 00 01 40

The first 3 bytes point to the label data segment (ie 10), the next 2 bytes are to do with ‘city
information’

Symbols

If you parse the LBL1 from the label offset you should get all the labels. When labels are encoded
in 6 bits, the start of the next label is always the next byte.

You may get funny letters but check Mechalas’ section on symbol letters— it’s fairly straight
forward except that Ox1B should be 0x1C.

More than 1 label in NET
A highway can have up to four label pointers in NET, ie
6C 00 00 72 00 00 91 00 00 12 01 80

The last label is terminated with bit 7 being set , ie 80 in our case. Thia shows 4 labels, one starting
at 62 00 00 and the last at 12 01 80.

This principle of the 7™ bit when set terminating a list is used in other subfiles as well , ie NOD.

For more information regarding other highway properties see NET.

Exploring IMG Format 21

POlIs

Points of interest all have a type number and a subtype number, ie type = 30 and subtype=01 . The
subtypes are supposed to be subsets of the main type: ie main type = amenity restaurant and subtype
= French cuisine

The length of each block varies depending on whether the subtype = 0 or not.

POIs with subtypes

type Lbl 1 Lbl I Lbl III longitude latitude subtype
POIs with no Subtypes

type Ibl 1bl Ibl longitude latitude

How do we know if the poi has a subtype or not?

Answer: if (IbIIII and 128)=128 then it contains a subtype.

This is where Mechalas is incorrect: it is not the bit 8 of first byte, but bit 8 of the 4 byte.

POI labels

If bit 7 in the above LBLIII block is set then the labels for all pois are kept in a block named LBL6
ie found at LBL + 4 byte pointer at (LBL + &57)

This marks the beginning of series of 3+ byte chunks, the first 3 bytes of each chunk shows
pointers to LBL1 label blocks.The other bytes indicate presence of phone-numbers etc.

Generally,we find 3 byte chunks showing pointers to LBL 1
Example :

POIL: 4639 00 €O BS FD 53 FE 11

Exploring IMG Format 22

Bit 8 of the IbIIII pointer is set, ie &CO : this means it has a subtype : Bit 7 is also set ; this means
00 39 is pointing to LBL 6 . (&CO0 = &40 + &80)

Now start from the beginning of LBL 6 ,underlined in blue and add &39 . It points to 3F 00 00

To———TUT T Tr UV UT U U7 UV UT SU UI U T UT
co [00] g0 ©0 00 00 00 00 OO OO0 OO 00 0D 00 00 OO0 A
15 " oo a0 00 00 00 00 00 OO0 00 1E 00 00 28 1
00 00 00 00 00 WML 00 OO0 00 00 00 OO 00 2F 00 -
00 00 00 00 00 00 00 Tr wmappldir 00 00 3IF 00 00

47 00 00 00 00 00 00 00 o0 OF 00 00 S50 00 00 52 G

This,finally, is our b1 pointer and hey presto we get the name of an amenity at offset 3F from
LBL1!

POIs with extended types

These are special POIs which may not show up on your GPS or Mapsource/Basecamp.

They could have types of 0x101, 0 x 10101 etc and are found at RGN4 + Offset &55 with length of
block at RGN4 +&68 containing additional information. The length of each block is variable
depending on bits 5 - 7 of the 2" byte .

In its simplest form its structure is:

Type + | Sub type latitude | latitude | Ibl Ibl 1bl
&100 mod 32 | longitude | longitude

Example § 14 35 45 00 23 01 06 2E 00
This is a poi with type: &100 + &14 + &35 mod 32 = &11415

It has a label (yellow) at offset &2e06 from LBL1:.
We know it has a label as bit 5 was set , ie &20 + &15

Another example encountered has bit seven set:

Example

02 Al 90 FF 9F FF CD 00 00 E0 09 00 00 00 00 01

The bit stream following the yellow 1bl label is at present unclear. It is possible that EQ marks
beginning of a possible bitmap stream/index with 09 being a flag and next 3/4 bytes a pointer to its
location. (The MDR has similar 2 byte codes , telling us how many bytes we should expect next, ie

number of characters and number of bytes to denote the index.)

For more information see TRE7

Exploring IMG Format 23

POLYLINES

Polylines ,like polygons, have a more complicated variable length.

The first 9 bytes are fixed :

0

1

2

3

4

5

6

7

8

type

Ibll

IblII

IbIIII

longitude

longitude

latitude

latitude

length

Because the highway node information can exceed 256 bytes we need to know when the length is >
256 and when it is not.

Answer: if the (type byte and 128 = 128) then we know the length is determined by 2 bytes.

The first 8 bytes gives us the starting point coordinates of the highway — however, it’s as an offset
from the centre of a box defined by each subdivision in TRE .

Polyline Labels

If an IMG is not routable then the 3 LBL byte chunks behave normally and show pointers to 1bl 1

If bit 8 in the above LBLIII block is set then these highways are routable. In which case the labels

of these highways are kept in a different block named NET1 ie found at NET + 4 byte pointer at
(NET + &15)

Railway lines , (type 0 x 14) are not routable (in theory) so IblIII should not have bit 8 set.

Exploring IMG Format

24

Polylines withextended types 0 x 100+

These are located in RGN3 offset &39 and are not routable; length of this block is found in RGN
offset &3d.

Their structure is quite different from polylines with types < 0 x &100.

0 1 2 3 4 5 6 T+ 3 bytes
Type + | Sub type | longitude | longitude | latitude | latitude | pointer | length Ibl
&100 mod 32 +data

Example : first 2 bytes are : 12 24

Add &100 to 12 and 24 mod 32 = 4 : this makes it type 11204

If the second byte ,ie 24, has bit 5 set (ie &20) then the polyline has text ; in which case ,the 3 byte
LBL pointer is stuck at the end of its data stream.

No text :

003F8590: OF 04 23 FF 10 00 11 30 A6 10 12 85 F0 02 01

With text:
003F8590: O0F 2423 FF 100011 30 A610 1285 F0 0201
003F85A0: 38 70 02

Length of a polyline type 100+ block

Byte 7+ defines the length of data to draw the polyline.

In the example before length is highlighted in green : ie &11 or decimal 17
If byte 7 is even then an extra byte will be used to calculate its length.

In our case it’s odd so only one byte is needed.

Single Byte Algorithm: (byte 7-1)/2

Two Bytes Algorithm: (byte7 + byte 8 * 256) / 4

Note: the length refers to the data steam to define the complete polyline, so it remains the same with
or without LBL pointers. For more information see TRE?7.

Exploring IMG Format 25

POLYGONS

Data structure is the same as for polylines.

Polygon Labels

Again see polylines

Polygons with extended types 0 x 100+

These are located in RGN?2 offset &1D ; length of this block is found in RGN offset &21.

Length of a polygon type 100+ block

See Polylines.

Exploring IMG Format

26

Plotting Coordinates

Finally we come to plotting our elements.

The coordinates are stored in 2 byte offsets from the centre of your current zoom level map

Earlier on we gave the following example 85.F.1.0,
for map zoom levels found in TRE where 4.10.1.0,
the last two digits determine the number of subdivisions 3,12.1.0,
in each map level. 2.14.1.0,
1,16,2,0,
0,18,5,0,

This tells us that we have 5 different map levels. Remember, at each level elements may be plotted.
The first level you encounter tends to be empty, not referring g to any elements and is used for
determining boundaries.

Look at the last level : 0, 18,5 ,0

The second number (&18) is vital to the way elements are plotted. It is referred to as the bits per
coordinate (bpc)

The formula for getting latitude and longitude degrees : 1 garmin unit = 360/(2/24)

24 (or &h18) represents the bpc

At each zoom level you swap 24 for the second number in our table . Remember, this will be
different for each IMG.

In our case the various bpcs are : &F, &10,&12,&14,&16,&18 , increasing the accuracy of the
coordinates.

Plotting POIs

64 15 03 CO 1E 00 1€ 00 OF
You need to add these two byte chucks in green to the 3 byte latitude + longitude centres defined in
TRE +&29 — see earlier. Add the first two to the latitude,and the second 2 to the longitude.

Next, multiply each by 360/(2724) to obtain degrees

Exploring IMG Format 27

Check if the value of your two byte chunks is >&7FFF:

If it is, then the result is negative , ie -(65536 - value),

Plotting Polylines

Before attempting to plot polylines or polyhedrons, you must be familiar to some extent with
Mechalas description of bitstream parsing. This is heavy going but a few additional examples may
help:

06 E0 01 00 5A FF 76 FF 11 23 A5 C2 52 93 4A 77 EA 5C FO FO 8C 21 2A SA 4B 14 01

This represents a residential highway (06) with LBL1 ref at 00 01 EQ and longitude and latitude
starting at offset SA FF ,76 FF respectively from the centre of your zoom level map.

We know the start of the highway , but not the end, or any other nodes along its line. They are all
compacted in a bit stream, highlighted in blue.

The length of this bitstream always follows the latitude byte and is highlighted in green :&11 ie 17
bytes. The next byte,23, in yellow tells us ‘something’ about how many bits are grouped together to
determine our longitude and latitude. This may not be the same number — see further.

So far, so good. Now the fun starts:

We need to ‘translate’ the bit stream into binary, reading from left to right , starting at AS and
finishing at 01. Lats and longs are now determined by bits, NOT bytes, to save space . So we now
have to find out how many bits are needed for each!

Part of this information is also held in the yellow byte, part in the first ‘blue’ byte of the bit stream.

the first bitstream byte

Before we examine the meaning of our AS here are 2 examples of first bytes of a bitstream, starting
LSB, from bit O .

a) 101100101 etc
b) 111001101 Etc

The first bit is most significant;
if it is set then
1) all the longitudes in this line have the same sign ;

2) the second bit tells you whether they are all positive (0) or negative (1).
3) The third bit tells you about latitudes; if set then the fourth bit gives you the sign

Exploring IMG Format 28

you can see that both a and b start with the first and third byte being set (=1)

Longitude | Longitude | Latitude Latitude Effect

1=Has 1=- 1= Has 1=-

same sign | 0=+ same sign | 0=+

1 0 1 1 Going east
and south

1 1 1 0 Going west
and north

Now examine the first byte in our example above , ie AS:
In binary this is 10100l bit 7 to bit 0
Next, reverse the bits and we see that it starts with [lll 0101 bit 0 to bit 7

This implies that longitude is always positive and latitude is positive as well (- 0101 would
have signified all values being negative)

How is this going to help us to determine the bit lengths of our latitude and longitude?
If it is always positive or negative the shape of the line tends to be a curve. If you want to check

your code look for power cables or motor ways, they should general start with a 4 bit sign
determinator.

The ‘official’ algorithm:
Mechalas gives the following formula:

Longitude = 2 + base value + longitude sign + extra bits set in LBL (but see further!!!)
Latitude =2 + base value + latitude sign + extra bits set in LBL

I have found this to be incorrect; in my opinion it is:

Longitude = 2 + base value + longitude sign
Latitude =2 + base value + latitude sign

If the extra LBL bits are set then add 1 bit - this bit seems indicated the beginning of a line if set

(ie 1).

Exploring IMG Format

29

When the Extra bit is set additional information about the highway is held in the NET and NOD
subfile regarding speed and road type. It also means that the highway is routable.

If the sign of latitude is always the same then the latitude sign value = 0 else it is 1. Same applies

to longitude.

In our example all longitude and latitude values remain the same ,ie always positive or always
negative.

Let’s return to the base byte (yellow above , ie ...FF 11 23 AS...) :ie 23 :

1** “digit” refers to latitude, second to longitude (MSB to LSB)

Longitude =2 + 3 (base value) + 0 =5
Latitude =2 + 2 (base value) + 0 =4

If the base value is higher than 9 , ie B4, 6A, or AC etc) then see Mechalas.

Exploring IMG Format

30

Starting to parse bitstreams

Next, we start parsing the bit stream and begin with the fifth bit, because we’ve already used the
first 4 to determine the sign for our coordinates.

Remember, our starting point is not always the 5™ bit ;it could be 3" or 4" ; see following
examples.

In our previous examples the purple bits always were 4 bits . Now, some examples when this is not
the case.

Example 2

68 1001 ...

The first two bits are as above,ie 10, but then latitude is set to O (3rGl bit) meaning its sign is variable
and could be positive or negative. There is now no need for a 4™ bit. We know that our longitude
is always positive, and our latitude is variable, both positive and negative — total number of bits = 3.

Longitude =2 + (base value) + 0 + 0
Latitude =2 + (base value) + Il + O ([l indicates value being variable)

We start parsing after the 3" bit, ie 1001...

Example 3

0@ 1011 ...

In this case the longitude bit starts with zero, meaning its sign is variable

Longitude =2 + (base value) + 1
Latitude =2 + (base value) +0

Again we start parsing after the 3 bit , ie 1011
Example 4
08 10010

Here both longitude and latitude are 0 meaning both signs are variable ; no more bits needed to
mark our signs.

Longitude = 2+ (base value) + 1
Latitude =2 + (base value) +1

Parsing starts after the 2" bit.

Exploring IMG Format 31

If you are writing your own code it is recommended you look at the last subdivision containing

polylines as defined in TRE, as we don’t need to bother about left shifting the values — more later.

(There is a minor binary value error in Mechalas description,ie 0 x ab)

We now know the length for each longitude and latitude chunk and can start parsing; remember the

values are added to the coordinates of the centre of your maplevel block — see plotting POIs
Returning to our example

06 E0 01 00 5A FF 76 FF 11 23 A5 C2 52 93 4A 77 EA 5C FO FO 8C 21 2A 5A 4B 14 01

1) start with 5" bit of your total stream

2) longitude = 3 bits and latitude = 3 bits: so group the rest of your bitstream into sets of 3’s

x of point 1 : - in degrees: (FFSA + centre longitude) * 360/(2/24)
y of point 1 : 76 FF in degrees: (FF76+ centre latitude) * 360/(2/24)

x of point 2 : x=x + decimal(first 3 bits) in degrees : x * 360/(2"\24)

y of point 2 :y=y + decimal(second 3 bits): in degrees :y * 360/(2/24)

x of point 2 : x=x + decimal(third 3 bits) : x * 360/(224)

y of point 2 :y=y + decimal(fourth 3 bits) : y * 360/(2"24)

Exploring IMG Format

32

Plotting Routable polylines

If bit 6 of the 3" byte of the Ibl pointer is set then the extra bit =1

In its simplest form 1 extra bit is added to the Latitude only and an extra bit is added to the start of

the bitstream. Interestingly, not all highways of the same type in a subdivision are marked as
routable, perhaps they are at the end of the map boundary, or not connected.

example: bitstreams starting with 1010 ; longitude in yellow, latitude in green

100 110 1111 101 1001 without routing (latitude sign is variable)

1000 0110 1111 1 101 1001 with routing (latitude sign is variable)

Notice only 1 extra bit per coordinates. We have not come across examples of extra bits being
added to longitude as indicated by Mechalas.

Importantly and not mentioned by Mechalas, the extra bit is added to the beginning of each

longitude.

It is not clear why the extrabit is sometimes 1 and sometimes 0, as it is not a simple case of
marking a junction or not.

For more information see TRE7

Exploring IMG Format

33

Left_shifting Coordinates

The more you zoom out , the more sparse the map is going to be. You don’t need to plot all POIs
and your highways require fewer nodes, so the length of each bitstream tends to be short.

Also, crucially, you can reduce the accuracy of your coordinates and save bits.

Bits_per_coord

Map Bits | subdivision | subdivision

Level per
coord

85 &F 1 0

4 &10 1 0

3 &12 1 0

2 &14 1 0

1 &16 2 0

0 &18 5 0

When we convert our data to degrees we use the formula:
Long=x *360/2"24 Lat: y * 360/2"24

The third column, bottom row contains this number, &18 ie 24 dec
Each time we zoom out we use a different factor: 16,14,12,10,F

So, in our example, when we zoom out, we need to multiply our coordinates by: * 360/2/22

Left Shifting

However, each time we zoom out, before we obtain our degrees, we need to left shift our
coordinates using the following formula: 24 — bits_per_coord.

Left shift means ‘increase’, in the sense that positive becomes more positive and negative more
negative.

POI Example :

64 15 03 CO 1IF 00 1€ 00 OF

Supposing this POI was found in a maplevel 2 : we read off and find our bits_per_coord : &14 (dec
20)

Exploring IMG Format 34

First change 1F00 into bits. 1111000 , starting from bit 0 to 7
We left_shift by (24-20) ie 4 to get 00001111000: 576 or &h240

Take care when numbers to be left_shifted are negative, ie &FFF7.

Note: you need to left_shift all two byte values before adding them to the current coordinates
if resolution is < 24 . Three byte values are NOT left_shifted.

Exploring IMG Format 35

Plotting Polygons

Polygons are parsed in the same way as polylines.

You will notice that most polygons are not drawn at the highest zoom level/ sublevel and that lower
zoom levels generally contain a bounding box of &4B or 4A.

Interestingly and perhaps not surprisingly ,shapes are not closed.

Special cases in a bitstream

Mechalas has given us some valid pointers to how we need to parse a bitstream chunk with ONLY
its last bit set, ie 001 or 00001 etc (LSB to MSB).

However,unfortunately his description is somewhat incomplete.

Only cgpsmapper and topo maps seem to use this feature , so it is worth experimenting with
cgpsmapper to unravel its obvious complexity.

Use gpsmapedit to create various zigzag lines and save as a mp. Then export using cgpsmapper.

Regard 0001 etc as a flag to indicate special cases to create larger numbers,either negative or
positive.

The sign value is determined by what follows!
Examples: (from LSB to MSB)
a) 00001 001001 special case followed by negative number .
This has the effect of increasing its negative value - documented by Mechalas.
b) 00001 001010 special case followed by positive number
This has the effect of increasing its positive value — not documented.
Value = 274+ 20
c) There is an additional case,also undocumented , when ,say, 0001 is followed , often several

times, by another 0001 , until a lower bit is set. - this only works if the extrabit is not set (
information given by Attila)

Exploring IMG Format 36

For example:

0001 0001 0001 1100

This creates a value of 273 (0001) + 273 + 273 + 3 (1100)
A visual example:

The following bitstream of a polygon contains somewhere in the middle some consecutive
segments with last bit set only.

0000001 0000001 0000001 0000001

3F 44 94 D9 54 B3 C1 CF 10 20 FC 52 B4 9F EE 55 53 EC 62 34 C8 OF
FC 43 ED 02 81 43 AE 30 81 DC 0C 92 45 4F 80 1B 30 18 8B 43 8B 20
3B DC 00 24 5B CB 06 00 81 40 60 00 08 04 02 4B 00 00 10 58 04

(length=&3F ,base value=&44 etc)

And looks like this with polygon closed:

Exploring IMG Format

37

TRE from Ox4a

Offset description bytes
0x4a Polylines Resolution Block 4
0x4e Length of block 4
0x52 Length of record block (ie L= 2) 4
0x 54 Number of L+1 bytes ? other length 2
0x 56 other length ? 2
0x 58 Polygon Resolution Block 4
0x 5S¢ Length of block 4
0x 60 Length of record block (ie L= 2) 4
0x62 Number of L+1 bytes ? / other length 2
0x 64 other length 2
0x 66 POI Resolution Block 4
0 x 6a Length of block 4
0x 6e Length of record block (ie L= 3) 4
0x70 other length 7 (ie L=5) 2
0x72 other length ? 2
0x74 MAP ID also used in mp section of gmapsupp 4
0x78 4
0x7c Pointers for subdivision for extended elements TRE7 4
0x 80 Length of this block 4
0x 84 Size of record ie 0 x 0d 2
0x 86 2
0x 88 2
0 x 8a Extended types and draw order pointer TRE8 4
0Ox 8e Length of this block 4
0x92 Size of record 2
0 x 96+ Values used to encrypt data based on map-id 2
0x98 2
0 x 9a - AD | encrypted key last 4 bytes get set to zero after decryption ! 19
TREI gets decrypted - firts line of mapsets

0x ae TRE 9 4
0xb2 Length of block 4
0x b6 Size of record (0 x 5) 2
0 x b8 2
0 x be TRE 10n block 4
0xcO Length of TRE10 4
Oxc4 0x01 2?
0xc6 4?
Oxca NT TRE11? &1A 4
0xcE Must be 2 as CF as a new header 2
0x CF 4 byte parameter 4
0xd3 Parameters 03 00 2
0xd5 A block 4

Exploring IMG Format

38

Oxed Block looks like a pointer or length 4
Ox f1 block 4
0xf5 length 4
0xfb block 4
0x ff length 4
0x 103 Record length (?) 9 2
See headers up to &110

Some non NT imgs have a TRE header with length O x ca but most of are 0 x bc long.

The latest 2012 TOPO imgs have headers up to &da

No idea what TRE10 or 11 represent.

A lot of the TRE is now clear and documented ; but there is still a lot to do!

To give you a taster ,the PIDs are kept in a single byte with say EF down to E6 incrementing the
PID and EO to ES decreasing its value! Offset rule varies and is linked to values stored from 0x96 .
Similarly with the FID (2 bytes) , proceeding the PID (1 byte). There is no problem obtaining both
values in a gmapsupp as they are kept in the mps section.

Exploring IMG Format 39

TRE7

Each block of extended elements, contains elements at various resolutions. So, if your IMG
contains extended pois or polylines etc then they too are plotted at different resolutions.

Trouble is, that without any pointers, it is impossible to plot these extended elements correctly as
they may need to be left_shifted

Fortunately, TRE7 provides essential pointers for each subdivision. Interestingly, in locked files
these are not scrambled!

Pointers for each subdivision are found at 0x7C offset from TRE, called TRE7, usually in blocks
of 13. Length of this block at 0x80

The size of each block is defined in TRE + &84 , ie &0D
So, the length of each group of extended pois is determined by the beginning of the next offset or

then end of the block itself. Each offset is always calculated from the beginning of each block of
extended elements.

Polygons 4 bytes Polylines 4 bytes POlIs 4 bytes Refers to number of
element types in nxt
subdivision (0 - 3)

0 means nothing to
follow

3 means pois polylines
& polygons)

example of tre7 (magenta number of elements in next subdivision)
00000000000000000000000000
00000000000000000000000001
000000001A0000000000000002
590000006F0000000000000002
72030000D10000000000000002
E7060000BA0100000000000002
350B0000860300000000000002
720D0000330400000000000003
90100000E10500005700000003
F3180000F1090000A500000000

However, it can be more complex particularly if size of records are >13. In fact it is not clear what
additional information has been added. Again, then element indicator, doesn't seem to follow the
above mentioned rules. As extended types are designed for marine maps, the additional information
may include min max depths for each subdivision, as in the DEM subfile.

Exploring IMG Format 40

example 2

00000000000000000F000000006032000024400000C2870100F4250200
00000000000000000F000000006032000024400000C2870100F4250200
00000000000000000F000000006032000024400000C2870100F4250200
000000000000000007000000006032000024400000C2870100F4250200
000000000502000007000000006032000024400000C2870100F4250200
000000007C04000006000000006032000024400000C2870100F4250200
00000000DD04000004000000006032000024400000C2870100F4250200
00000000E505000007000000006032000024400000C2870100F4250200
00000000D808000004000000006032000024400000C2870100F4250200
000000004F09000005000000006032000024400000C2870100F4250200
00000000C409000005000000006032000024400000C2870100F4250200
00000000060A000004000000006032000024400000C2870100F4250200
000000003BOA000004000000006032000024400000C2870100F4250200
00000000580A000004000000006032000024400000C2870100F4250200
00000000580A000005000000006032000024400000C2870100F4250200
00000000770A00000F000000006032000024400000C2870100F4250200
00000000EBOC0O0000D000000006032000024400000C2870100F4250200
00000000660D000000000000006032000024400000C2870100F4250200
00000000660D000004000000006032000024400000C2870100F4250200
9A030000BA0D00000669020000A2320000CE4E0000358A0100F6250200
24070000270E000007B6040000DE320000ED5400003D930100F6250200
780A00004E10000004F6060000383400002A6900007B980100FA250200

TRES

This block located at TRE + &h8a contains all the extended types and their draworder found in a
particular IMG file. Each element data can be 3 bytes or 4 bytes long.

Example: &10F08

-~

Typ mod &100 draworder subtype

F 2 8 0

An element with the lowest drawnumber seems to be at the highest level, ie the top,
The order in which they are plotted is:
Polylines ,followed by polygons,followed by POIs. Interesting that POIs can have a draworder!

an example of TRES

1120
1130
1140
6110
6530
6540

TRE9

Nothings is known about this section; if present , there only seems to be one record of 5 bytes

Exploring IMG Format

NET subfile

Here we find additional data concerning routable highways ,such as its length , its direction (if one

way),the maximum speed allowed, and its house address information if any.

The header looks like this:

NET Offset | NET Header
00 Header Length
02 GARMIN NET
15 Pointer to beginning of NET1
19 Length of this block
1D Road definitions offset multiplier (power of 2)
1E NET?2 Segmented Roads
22 Length of this block
26 offset multiplier (power of 2)
27 NET3 Sorted Roads
2B Length of this block
2F Sorted roads record size
NET1

We’ve already discussed how highways can have up to 4 labels. The following table shows a
‘typical’ road definition entry in NET1 ; the length of each record varies depending on number of
labels,number of subdivisions the highway is plotted and whether it has address information.

Items Bytes example

labels 3 per label 12 00 00, 45 00 00, 24 01 81
Road Data 1 &44

Road Length 3 3201

RGN_index_overview 1 per record 1,81 (2 records)

Highway pointer 1 01 05,0106

Subdivision number 2

House number blocks 1 Set if bit 4 or Road Data is set
Street Address info block | varies

NOD length of pointer 1 1or2

NOD?2 offset 2or3 2 or 3 of NOD length or pointer=2

Exploring IMG Format 42

Example:

Image shows 2 highways in NET1

Notice how 3 byte records 1 and 2 follow each other after 00 81

37 (00 |47
|0 [1E |07
0o |00 oo
lo0 o0 |00
|01 | o6 oo

a1

15

| o0
| 00

o1

[52

o0&

| oo
| 00

05

40 |49 |4E
|37 oo oo
|00 |00 | sB
01 |00 | &0
oo o1 oo

20

| o0
| 00

111]
Lk

[4E

249

00
80

&8

07

45

oo

o0
44
.uu

oo

54 01 00 DB |07
00 o0 00 | SB | DO
06 00 00 D0 | 03
06 00 00 |01 B1

wm—

#i0 44 OB D0 00
— —
12 00 00 |00 00

| 7-GARMIN FET -+
...l._?_..s..._[.

Highway 1 Highway 2
LBL 60 00 80 68 00 80
Data 44 44
Length of Road 06 00 00 0B 00 00
RGN 01 81 01 81
Record 1 01 at subdiv 6 2 at subdiv 6
Record 2 01 at subdiv 5 2 at subdiv 5
Length of pointers 1 ie2 1
Pointer to NOD 2 00 00 07 00

Data 44 means : has NOD info and has bit 2 set , see Mechalas Route definitions

In NOD 2 at offset 00 00 I find: a seven byte record

17 00 00 00 02 00 03 and

1722 00 00 03 00 07

The first byte refers to the speed class and road type — see Mechalas

&17 is &10 + &7 ; the when translated gives me a max speed of 35 mph with a road type=1

Te next three bytes are offsets from NODI1 , ie 00 00 00 and 22 00 00

This is followed by 3 bytes giving information about the number of routing nodes in a highway.

Length of highways

Unlike stated by Mechalas ,you double the value to obtain length in metres.
So the first hw was 06 00 00 which gives you a value of 12 metres and the second, 0B 00 00,
produces a value of 22 metres. These values together with the max speed can be used to calculate

ETA.

Exploring IMG Format

43

NOD subfile

Mechalas offers some valuable information regarding the NOD subfile, but unfortunately a lot of its
structure remains unclear.The NOD subfile is as the name implies about nodes and how they are
linked ;it only exists if the IMG is routable. I am grateful to Robert Vollment for additional pointers
regarding the NOD file structure although my findings differ in many respects.

NOD 1

NOD 1 contains information about nodes, linked directly or indirectly. Some of it still seems
unclear .

NOD 1 Node records
Block 1
Table Header Details of size of

each table

Table A Road segments
Table B Inter area links
Table C restrictions
Block 2 ,3,4
etc

NOD 2

NOD 3 Boundary nodes

The structure is quite complex; within NOD1 there are , depending on the number of nodes, various
‘green’ blocks, following each other .

Each records block is often terminated by so called boundary nodes — these are used as links to
other IMGs.

Finding the length of each record can be quite challenging.
We can ascertain where records start from offsets found in NOD 2 and NOD 3.

The header of each record begins with a pointer to other tables,ie A ,B or C.

pointer | Flags coordinates | coordinates | linked Current | Flags A | Flags B
highway | highway
nodes nodes

02 44 2E70FE | 481217 05 07 6D 29

Exploring IMG Format 44

Pointer

The first byte points to the Tables Header — see below.

Flags at offset 1

There are several flags which are set to indicate special conditions

Mask Purpose
0x4
0x8 Marking a boundary

0x 10 | Marking a restriction

0x20 |2 byte coordinates offsets instead of 3
0 x40 | Direct links

0x45
0 x 50

Any combination is possible but most frequently encountered are 44 or 4C

44=40+4
4C=40+4+ 8, ie boundary nodes as found in NOD3

Direction Coordinates

These could be 2 or 3 bytes depending on Flag 0 x 10

Nodes Bytes

The two bytes after the coordinates indicate number of nodes in a highway as a multiple of 2 (?)
The first nodes byte contains the number of nodes (as a multiple) of a linked highway ,ie
(5+1)/2=3

The second contains number of nodes in current highway: (7+1)/2 =4

Flags A & B

Flag A is one byte and Flag B can be 2 bytes. Both also contain information showing bearings
between nodes.

Flag A Flag B

0x7 Destination Class 0x40 Inter area link
0x38 0x 80 Last link
0x40 Going Forward

0x 80 New Direction

Exploring IMG Format

45

Tables Header

There can be several tables headers within NOD1.
An offset to a tables header is NOT found in the NOD header; instead it has to be calculated.
Presumably, this is because of the overwhelming number of nodes an IMG may contain.

Strangely each new ‘green’ block,except for the first one starts with a tables header.

To calculate the start of a tables header you need to add &40 to the end of a previous records block
and then find the nearest multiple of &40

Example: end of node records block :1C76
1C76 +40 = 1CB6
The next multiple of &40 is: 1CCO so it starts at ICCO

This is a 9 byte header:

00 | 01 | 02 03 | 04 | 05 Table A | Table B | Table C

coordinates Coordinates number | number | number

Number indicates number of records found in each table. Because each table contains records of a
fixed length we can calculate its total length and thus the beginning of the next node records block,
if any

Table A

0x00 3 | Bits 0-29: Pointer to NET; bit 30: no delivery; bit 31: no emergency
0x03 | 1 | Road class : bits 0-3: road speed; 4: oneway; 5-6: road class; 8: toll
0x04 | 1 RoadID

Each record has fixed length of 5 bytes:

00 00 13 00 12 RoadID = 18
00 00 13 00 20 RoadID = 32
00 00 13 00 2C RoadID = 44

01 00 13 00 3E
01 00 13 00 F3
00 00 03 00 32
00 00 11 00 44

Exploring IMG Format 46

NOD 2

It starts at NOD + &25 with length:NOD +&29
It does not appear to be accessed from any subfile.

0 1 2 3 4 5 6+
Road Offset into NOD1 mask Mask? | Node
classification bitmap

Its length is generally 7 bytes but depends on the first and ‘blue’ mask byte.
If the mask’s value is >8 then an extra byte is added for every multiple of 8.
In addition, if bit 8 of the first byte is set, extra bytes highlighted in grey are added- see below.

Examples:

17 00 00 00 02 00 03

03 25 59 DB 01 00 04

25 87 00 00 08 00 FF

8B 5C 01 00 08 00 FF 04 14

87 1D 2D 03 OB 00 FF 06 04 12

BB BO 5B 00 14 00 E3 F7 OF OC 09 40 00 OD OE
25 82 61 00 09 00 FF O1

03 3F 1A 00 12 00 FF FF 03

For road classification see Mechalas .

Notice how offsets into NOD1 can show masks in the 3" byte, ie &DB - their significance is
uncertain.

Byte 4 acts as a mask for byte 5 or 6,ie gives you the number of bits to consider when examining
byte 5 (and?) or 6.

In our first example byte 6 contains 0x03 which in bits from LSB looks like 11000000.

The mask value (2) makes us consider only the first 2 bits, which could imply that this highway has
at least 2 nodes connecting to other highways, both of them set.

0500 1B : 11011000

This would tell us to count the first 5 bits; the idea is that a node will be ignored if a bit is not set,ie
0, so we skip node 3.

If this is true then the maximum number of nodes can only be 8; to overcome this an extra byte is
added for each additional multiple of 8 — see last 2 examples

Exploring IMG Format 47

At present, the function of byte 5 is unknown but we surmise that the mask is 2 bytes long to allow

for values >255

0 1 2 3 4 5 6+
Road Offset into NOD1 mask Mask? | Node 04,08
classification bitmap ,0C

If 8" bit is set then the value after 0C signifies the length of extra bytes needed using a simple
algorithm: extra bytes = (value-1)/2

Example 0C 13

> (13-1)/2=9

9B 13 08 00 13 00 7F FB 07

A5 82BEO01 1700 F5 FF 7B

0C 094200 BSIE0

0C 134100 [SHGHTNSNONDNE

The ‘red’ bytes are always ordered according to size. It is not clear what they mean.

Exploring IMG Format

48

DEM subfile

Elevation data is found and plotted in the DEM subfile. For more information see:
Exploring_ DEM.pdf

.
.
4
s
f
i

L]

[L DEHLITRNG
TARTE0 indem 1 - LI L, SN L IR L N L L
:“}Ef "tﬁ: Bl H (3 3700 25 o0 47 %1 %2 4D 4% AL 30 42 W 4B 01 0 08 07
ARk ? B TR 4GB &6 L3 G4 BE 81 W D 81 M M MW B M M K
HH:E: ‘" IITAIS. 00 40 Bl OC 80 S0 %0 20 B} 33 L B B2 W 43 8
04160 = talew 37 ITTES0 Em 01 AR B0 80 E4 83 B0 FA 41 A3 B0 B3 N 89 40
HLATEE ¥ belem 2T . IITHME B 07 @b B0 B0 dE 6C B0 D 42 N B0 BB M M B
448140 mize ol Tmcord in TR P 4 4 B0 B IR K0 O A BF K M M S I
L et Mol S S pi MR T4 07 41 00 B0 33 I3 00 M N M M M M 11 M
R0 merih 407391296 IO AT 07 EA DO B0 IE LN G0 €1 & AL B0 B0 8T 1T 4
L4019 distence belwosn pizels 51648 FITERE. A3 AT 79 A0 B0 CF IR 90 AF 82 OF 0 M M I @
P Tt oy e e e IS S0 93 34 WL B0 43 4 90 W 51 AR B8 S B oW
ILATH man beighi BO5E VMAS EF 81 G0 U1 B0 B 30 60 WM 81 M Bl B0 X M W
= lavremt AF 01 WY Bl RO 31 D €0 34 41 B B B0 OF M 4
ok L S AThECE B0 9k B8 @ f0 M 10 M B 4 A W O i
[o e 1 IHEE MM 4 MR G190 B0 4% B0 18 B AN B MW D M W
lnEemmE 1 MHEE O 00 44 U1 B0 B4 4C 90 B0 €0 BE M
] - MIET CN 00 48 41 B0 B OS2 20 NN 80 MW BB MM M
=it - AITEeE 94 4i @F @1 S @3 AR S0 BA 41 OF %0 S8 W I8 &
PTLLE BN O 9 S0 90 4N L 90 90 S0 07 B0 80 [B 4
- - PTG M 92 A5 GO0 00 4 @4 80 A0 @32 4B @ B A B W
nm = =P 1ITAE SE OF 44 GRG0 B0 6B @0 Y &2 M W oW M E W
o FTIEF M 3 BF G0 G0 M YL M 4 W & 9 8@ iF W M
o MITLNE S B A} BO EA BA TH B0 0 57 M4 B4 B0 LA TH M
- - T WIS 3 B EY DO B0 YR 0 00 30 43 EE B0 B0 IR KX
. - 1 - —r 77E% AF G2 B4 B0 EE 32 M B0 0 & AR B WO P W
! ! iz ¥ il ATTiRe M 3 AR 91 B0 G4 @B 30 W &1 A %l G0 AF M M
HENE ¥ L1t 1 MITENE AT B S8 81 PO N1 B 80 G4 51 A Bl B2 H M M
& WTIAN I8 01 TA BL B0 4B WA G0 FT 8L KT Bl ®O DT W M
- ¥ITIBR BB 0 S0 B0 W0 T A1 40 4% 6@ 0 M B0 T A W
5 TEER B R aF 91 S0 M AF S0 M 2 M 9 M A =
MTIDE B4 OF TH 41 B0 EA AF S0 60 81 5 WL 80 B N M
MTICS 1L OF ¥ B0 B0 B NT 00 £N 41 BT B0 B0 N1 B 80
L = ITERR M 97 AT G0 s BC B M M W K M o M O
= ITIEE ¥ A7 M 80 8 2 & M O ID M OB M oMH oW O W
. TS BN AL £ B0 B0 AN X 80 AA 5L FI 0 00 TP OB M
= MTIzE BA 0L M1 DO B0 BF OF B0 OC @2 NA B0 B0 MM T M0
B = C AT BC 90 AR B0 B8 43 O 99 EC W D7 B0 B OF MM
= - I:"I"."R BA_9 k3. W80 Cp B0 90 T 4 FT OB 0N 80 0P ¥

Exploring IMG Format

Creating IMG files

There are several ways of creating an IMG file, each with its own personality:

1) using cgpsmapper

2) using MapTK

3) using mkgmap.jar
It all started with cgpsmapper, still in many ways the King , making full use of all the bitstream
parsing options, but unable to cope with extended elements and latest developments. It uses 8 bit
LBL encoding.
MapTK is quite a remarkable piece of software ; it produces IMG files from a text file and handles
extended elements,using 8 bit LBL encoding. It is struggling to keep up to date but its IMG files are
almost text book, ‘ ganz griindlich’ ie methodical.
By far the ‘neatest’ ,using fewer subdivisions and most up to date, is mkgmap created by a team of
programmers ; its IMGs are a delight to parse and highly recommended.

6 bit LBL encoding is used.

None of them can parse DEM subfiles.

NT POIs

The structure of NT pois is basically understood and similar to non NT pois. The only difference is
the data streams following the LBL / lat/lon blocks.

Such data streams do not have fixed lengths and Garmin is employing several tricks to define the
various lengths - more information on

www.pinns.co.uk/osm/garmin.html.

Exploring IMG Format 50

Extra POI data stream

This consists of 3 or more bytes containing the ID as found in a TYP file - the maximum ID seems
to be &FFFF.

Each of the 3 bytes include masks the purpose of which is not clear. This also makes it very hard to
establish the extra poi ID.

IMG2TYP can display all IDs

\\ *" :.
S

ek s

'EAutehaus Freund Gmbh

‘BFiat Automobll Vertriebs

hBBreucker & Bergmann Gh
Autohaus Breucker & Ben
. i =

Exploring IMG Format 51

bitstream, 28, 32, 33, 34, 36
cgpsmapper, 13, 36
Coordinates, 27
DEM, 1, 49

extended types, 17, 23
extra poi, 51

FID, 39

Garmin, 1

GMT, 5

header, 9

IMG, 1, 5,7, 10

IMG Explorer, 5
IMG2TYP, 2, 6, 51
LBL, 18

left_shift, 35

Locked, 17

MapTK, 50

Mechalas, 5, 16, 21, 22
mkgmap, 50

NET, 1, 7, 18, 20, 21, 24, 30, 42
NOD, 7, 21, 30, 42, 43, 44, 46, 47
NT pois, 50

PID, 39

POI, 17, 18, 20, 22

polygons, 7, 8, 10, 12, 16, 24, 36
Polygons, 10, 26

POLYLINES, 24

RGN, 1,7, 10, 11, 12
Subdivisions, 9, 13

TRE, 1, 10

TRES, 41

types 0 x 100+, 25, 26

Exploring IMG Format

52

