Exploring Garmin’s IMG Format

TRE , RGN, LBL, NET, NOD & DEM

BELL I RO 5T AMES

EGTE 400 EEH WOODLANE CARPWEK L
BgiTy MM ERCH +
E1gmd a0 71l]

1o 4Da) AE 340 CAR Podled FOR BETAL T

Mol 1m0 B !
Ax Gl Ve AR K e

i L T 3 W
i.lnl:m:n M RGIONGIR g TG § T

ol Rl T 3 W AT 48 T i A
LF BOCTRELL Lukx EEC W 3EMY D34 Lh b
I BT OF TR Ay & Bl HUGGE. THER
L =L = o
! f

SRRPFURD AFMIEL MR W e e
40 N1VELISCORBE MEY & amm DUSE ST A28 884216
S RLLSE T W doua HAYDOH. BEITOATCAN
A e w6 IHE AT WDICD WOOOS dRSEFAIEC
;;Il-‘."l' CEmES RLLELI IWE BT WD WOODS RIRFATE

. WE & 10WH BLB BCICE WCTOR DMBANFI
! [14 i WO 6 MW S AKCE TRTY REMLEE
L= - AALTE GimdM AR wmRGE TEEEL AL
:! Eﬁ%l ET WICEAL e ¥

e Addvess | Type LU I T T) E

HTKIFEAL HECA T 1MLE MANT TECE WCTORI ICET MR
TEANE LT NARLANET] I RN E1QERL EE SE b ARCHEN QHUHHFI

Elave TFCA PERY . PSSERIFER
10088 TAED BEHOR 1365 TE R
k- T 1] HERFAT L

EUIEEEE BEE
;

frmed BEa 1648 3 EE £ 5

R Masu pag 1344 DBPES]
18} LaeiEy [0 T T T B AL PR
LIY ERCIVITL GRETN WOA 1T QWS MMM DICE VRRY . BRAT R
L TP WEC F QWOT B0 MIAD VWARY . THICMEE
F) REREN ED 3 1 Fatn b DFRCE THMFTID

1Al TaTrTos ST MEE R 100 BasEm MR fEsEiICIES

(c) N Willink 21/08/2011
If you downloaded the manual from another source it will not be up to date.

more information on www.pinns.co.uk/osm/garmin.html

Latest Revision 02/03/2015

Exploring IMG Format

QLI D= 31 =To 11 o] e e PO PP SSTPP 4

Download & checkout the only tdb editor 0ceemm e eeeeeeeii e e 4
1 oo 18 ox (o o PP 4
1 oo 18T ox (o] o PPN 5
L= 10 11 0 T N 5
IM G 2T Y P ettt ettt et e e e ettt e e ettt e e e e ettt a e e e e e aetaar e e s 6
(=101 T L= Lo [T £ P PP 7
[AV 1= Vo [T SRR 7
How are all the elements (pois,polylines and polygons) Stored2............ccccceeeeeeiiiineennnnnn. 8
MAP TEVEIS....ceeeeeeee e ettt e e e e e et e e e e e e et aan i aaan 8
SUBAIVISIONS ...t et e e e e e e e e e e 9
PoiNters in @ SUDAIVISION...........uuiiiiiii i eemmmme e e e s 10
Finding number of pointers for each subdiViSION ..o oeeiiiiiie e 11
Start of SUbdIVISIONS IN RGN + &29iiiiiiiiii e 13
[0 Tt = To N IO] =@ Iy 4 = T oL PPN 17
0 PSR 18
Lbl pointers NOT directly pointing to Ibl1 label blOCK..............ccoooiiiiiii s 20
SYMDIOIS e ettt e e e et e e e e e 21
More than 1 1abel iN NET ... e et e e et e e e e e e e eaeneeaeann e eaees 21
P O LS ettt e em—————— ettt e e e e et ettt e e e et eeanaa e e aeeeeett e aeeearanrnn s 22
POIS WIth SUDTYPES. ...ttt e e e et e et a e e e e e enbtb e e e e e e eennees 22
POIS With NO SUDLYPESo e 22
O I = o1 £ 22
POIS With @XIENAEA LYPES ... ittt e e et e e en e as 23
O T I I 1 24
POIYING LADEIS ... s+ttt ettt e et e e e et e e e et e e e eaa e e e e ata e e eeaanaeaeees 24
Polylines withextended types 0 X 100+uuiiecemmiie e e e e e e eeaa e e 25
Length of a polyline type 100+ BIOCKcoovuinii e e 25
POLYGONS ...ttt ettt et e e e e e et ettt e e e e e e e et tta e e e e e aeaean e e e e e e tee bt e e e eeaeaes 26
POIYGON LADEIS ...t r e 26
Polygons with extended types 0 X 100+ iiiiiieieie e e e e e eaaaes 26
Length of a polygon type 100+ DIOCKcoovniiiiiiiie e 26
(o) ua[aTo [@] o [T (=1 PP 27
[(o 11 T T = £ PSPPI 27
PlOttNG POIYINES ... e et e e e e e e e e e et e e e et e e e e eaa s 28
the first DItStream DYLEo e e 28
The ‘official’ @algOrtNMI e e e 29
Starting to Parse DItSIMEAMIS. e e e 31
Plotting Routable POIYIINES ..o e 33
Left_Shifting COOMINALES........couiiiii e eeeeee et e e e e e e e e e e e eneneaans 34
Left_Shifting COOMTINALES........coeiiiiii et eeeeee et e e e e e e e e e e e eneneaans 34
= T KT o L= g o 0 Lo o P 34
= 10 1111 o PP SPPPPPPTRT 34
PIOTING POIYGONS ...ttt e e e e e e e e e e eenn e e e 36
Special Cases iN @ DItSIIEAM e e 36

Exploring IMG Format 2

LI =2 40
= 41
N 41
| YU o] 1 TP 42
I = 42
Length Of NIGNWAYS e e e 43
N[O BT U] o) 11T 44
1 0 5 0t 44
[0 1] (= T 45
[= T S L0 15 =] A S UPPPTR 45
(D g=Tot A o] g W @Yol {1 =1 (= 45
N\ oT0 [T =Y (PSPPI 45
[P T AN = TSP 45
=1 0] [STS (ST [T T 46
B IE= 1 01T 46
11O 5 2 47
] YT o) 11 49
Creating IMG fllES ... e e e e e e e e e e e e et e e e e e e e aaaa s 50
I I O £ 50
| = W O W o b= = Ty 1 T- 11 o [T 51

Exploring IMG Format 3

TDB Editor 1.1

Download & checkout the only tdb editor to:

lock & unlock your Mapsource/Basecamp maps.

restore Mapsource when it crashes

rename any mapsource/basecamp name

change mapnames so they are easier to read on your gps
Lock & Unlock your own maps

add/remove routable option

force direct routing when it doesn't work

add/remove profile option.

add or edit copyright description when creating your own maps

create or remove 'Reduced map window for printing' and other (priotiviewing)
messages

disable any form of printing.
add or resize Restricted Window View

quickly identify & edit mapnames, useful when you want to isalpteticular IMG file.

N .
i

A D L 5~ AR S .
e e .h‘/ ‘: %&; il &7 j

N e =]

Introduction

For anyone who wants to delve more deeply into the IMG sireidohn Mechalas (JM)Garmins
IMG File Format’ is a must read. We all owe a great de the author of cgpsmapper without
whom the booklet could not have existed.

Apart from this excellent document there seems to be nothiegedslable. Unfortunately, there
are some crucial errors in the JM’s description, makingpite even more challenging.

Our aim is to tie up some loose ends and use frequent exampiake the format more accessible.
However, the IMG structure may to some still be a steaming curve.

In this ongoing document | intend to focus on how to access anggippolyline and polygon

data within an IMG file. From the picture in the title yoan see that, my humble efforts after 3
years of frustration, have finally been successful. Theme many occasions when | felt like giving
up as | was getting nowhere really fast.

IMG Explorer shows pointers and coordinates held in an IMG file andeatownloaded on
request only.

We would welcome any additional information or queries usingileaddress found at :
WwWw.pinns.co.uk/osm/

Garmin NT

At present this document does not address
Garmin’s new NT format — more information
about this subfile can be found abenstreetmap
GMP wiki . Suffice it to say, the img structure of|
pointers is not much different and the offsets ar
calculated differently. With active routing
additional information is attached to each line.

. o . - Chapal = 2}

Its routing compaction is also more efficient. Bay s
: ! A1ES0 gy

. ! —a i J p %I:'J

NT caters for postcode searches and routing using _:mt.'.“'?%g

multiple highway lanes.
For this reason, there doesn't appear to be a viable incemtiseerse engineer this format.

IMG Explorer can ,however, extract all tiles contained in the file ginds the starting address for

each tile. The LBL contains the ref names of tiles foldwy pointers to each tile taken from the
end of Ibl1,

Exploring IMG Format 5

IMG2TYP

I've written this GUI to read IMG files and list alement types found in TRE so that they can be
saved as a TYP file. Check out on youtube

TYPWiz

Use TYPWiz in connection with img2typ and you are well on your twashanging the rather drab
TYP files which accompany CN 2012-2015 maps ! Check out on Youtube

T TPz e L1 ok Rotre] K e ST 2013 Contie12 vopeo0ns 1 g .
File Settings lcons Languages Registration Help

_J[EJ .II JIII 2635 Code 1752 25320121558

| [LI Iim R0 2E | Code i Coond 16820021553

L e L

5 5 nwwszuun-_ﬂ' Registered] KAa_typwiz3_9\NT 2013 Countries\12 europe\IDD00A4B.TYP
sl File Settings lcons Languages Registration Help

&>
T‘ih-.-,-;- i = [T | B 17 FIO[%3 | Code 122 + Created 26820121558
P10 GeII®ii ol o) [Furgms] [Lines | | Fois] Pﬂ:m Header AE - —— —
i o = D=~ AT S nEe® 0B E -
“. 707 2801 2802 20903 D04 2C03 2004 2005 2006 2C07 2C08 2009 2C0A 2008
AR | = - — - -
ocon oo |) ¢ EHE @ W& Ao
h | 2C0E 2001 2002 2003 2004 2005 2006 2D07 2008 2D09 2D0A 2D0B 202 2604 2EQ5 2EOA
O | e B
%m;a & I:I &9 E 7 @ & | & | P EI T}
N o 20y oo 6 W6 a7 o0 o0 FOC F0D FOE 001 Wz 303 3008 4
@@« odra@x = +B@
3005 3006 007 4100 4AD0 4B00 4C00 4EDD 5000 5200 5400 6401 6402 6403 6404 6407
& ,ﬁ\‘hiiﬁld’iiiﬁiﬁlﬂ‘e
B40C 640D 6411 B415 6501 6502 6508 650D 6511 6512 6513 6601 6604 6606 GGOA 616

Garmin headers

An IMG file consists of several blocks, or sub files, edoimg a specific job:

TRE, RGN, LBL , NET , NOD

The one we’re particularly interested in is the RGN selzg8 we want to establish how all
highways, polygons and points of interests are plotted.

RGN header

In the RGN subfile we find the essential data for plottingad@ments: coordinates, ,length of
highways, number of sides in each polygon etc. The header loolkiske

RGN Offset | RGN Header BYTES

00 Header Length

02 GARMIN RGN 4

15 Pointer to beginning of RGN1 data, ie first subdivision to include 4
possible POIs,Indexed POIs,Polylines or Polygons or firstlenegb

19 Length of this block 4

1D Pointer to RGN2 data block,contaiestendedpolygons with types 0 x 4
100+ ; for undocumented details about its structure see further

21 Length of this block 4

39 Pointer to RGN3 data block ; this block contagmgendedpolylines 4
with types 0 x 100+ ; for undocumented details about its strusage
further

3D Length of this block 4

55 Pointer to RGN4 block containirextendedPOls ; for undocumented 4
details about its structure see further

59 Length of this block 4

65 FF

66 3F (7F) (03)

67 0

68 20 3f {7 ff 3f 4

6D 4

75 Block or length 4

79 Ox E3 (E5)3f

Exploring IMG Format

How are all the elements (pois,polylines and polygo ns) stored?

You could imagine that, as maps rely on individual nodes, poatted first, followed by the
polygons etc. Yes and no. To understand how they are storecedié¢oneok at :

1) maplevels

2) subdivisions.

Map levels

To save space, Garmin opted for a unique solution using mapkevelsubdivisions.

To enable any kind of zooming, Garmin has decided to plotiW&taom chunks’; the deeper the
zoom the more information it contains, ie the more highwayaretplotted.

At the lowest zoom, very few pois, if any and only a few higfsaare plotted - each created using
only a limited number of nodes,thus making them look straightemamd ragged .

These zoom levels are called maplevels ,each with sulmfigisi

Maplevel 1 Subdivision
Subdivision
Maplevel 2 Subdivision
Subdivision
Subdivision
Maplevel 3 Subdivision

Regard map levels agroupsof subdivisions.

Each map level is given a separate data block telting
1) what elements to plot

2) at what resolution /degrees of accuracy

3) how many subdivisions it has grouped together — sometimes none!

Exploring IMG Format 8

Subdivisions

Before we retrieve these maplevel blocks, let's explueenttty gritty of sublevels.

Each subdivision contains data visible at that level. Some\ssiodis can share data with others.
The main highways are often plotted at different zoom leamedshence at a different resolution/
accuracy, whereas hardly any pois are plotted at the Idewestwhen you zoom out.

So there is a certain amount of doubling up, despite Garminis airaito reduce its IMG file size.

How are these subdivisions constructed?

Consider the following:
1) POls don’t need as much data as highways; in fact theyneslgt one node
2) Not all highways are the same length

3) Polygons are not the same shape and their number of nodescémovar

Unfortunately, because the pois and highways data are not théeseyties, we need to know
where the starting points are for each element data block .

Ideal situation : every object the same length:

Poi 1

Poi 2

Polyline 1

Polyline 2

Polygon 1

Polygon 2

Garmin’s approach:

Polygonl

Polygon2

Exploring IMG Format 9

You could not have the ‘ideal’ situation unless you limit the nemab nodes for each highway or
polygon to say 1000. That would be such a waste if the ligeshart etc.

Note :The maximum length of a subdivision is finite — the ebeamth is not clear - , hence the
existence of numerous subdivisions depending on the amount of dataamitiziplevel.

Pointers in a subdivision

As a compromise, Garmin decided to plot all pois in a suhdivia one chunk, followed by
highways, followed by polygons.

To make sure we know where each element chuck starts weoneeditven sompointers. These
pointers are not saved somewhere else but are given just thefatart of a chunk. More
specifically,all pointers are given before the first chunk appears, at the begjrofieach
subdivision and are 2 bytes long

| Pointer to chunk2 Pointer tochunk3 | Chunk1l | Chunk?2 | Chunk3 |

You would expect:

Pointer to Pointer to Pointer to Chunk 1 Chunk?2 Chunk3
chunkl chunk 2 chunk 3

To save space we don't need a pointer to the first elemérfodlews after the pointers,if any.
We can skip the pointer to chunkl ;as each pointer is 2 bytes, lasegknow where chunk 1 starts
(6 bytes from the offset).

Example:

Pointer to chunk2 Pointer to chunk 3 | Chunk 1 POls| Chunk 2 Chunk 3
Polylines Polygons

So now we know the start of each element chunk.
There are 2 problems with this solution:

1) we need to know how many pointers there are in each subdivision
2) we need to know the length of each subdivision

If we didn’t know how many pointers there were, we wouldkriow where our first element
chunk started- for an answer see later .

Again , supposing we knew the number of pointers, we could finfirshelement block, but we
wouldn’t know where the nesubdivisionstarted, ie with its pointers
We can't tell, unless the number of pointers & the start of each subdivisstonsd elsewhere in

the IMG.They are not found in the RGN but in another subfile, called'RE - see below

Exploring IMG Format 10

Finding number of pointers for each subdivision

The information is found in the TRE subfile, specifically mioéfset found at TRE + &29, or
&2429: ie offset value = &1BF . Add this to &2400.

The dark blue line points to blocks of 16 bytes, each block memtiiag a subdivision containing a
number of elements.
The first 3 numbers indicate offsets in the RGN (in pinkj,fourth number of each block of 16

bytes tells you what elements you can find each map lé@lais and or highways etc, underlined
in light blue — ie the first map level = 0 ,second Gfken CO ,DO,DO .

2800
i&if
1420
2230
2440
2450
2260
2870
2480
2590
2§80
2480
2250
24D0
J4ED
JLEF0
2500
2010
2526
2330
2540
2EED
2350
2570
2580
1380
2SO
2580
2250
25060
25E0
25FD
FEG0
2610
2620

Lo

HC 00
67 i
FB A7
0o 21
b o
1 =1
i
oo ulu}
88 00
00 Q0
B4 FEF
pd oo
53 74
BE T4
TO €85
oo 4
65 64
&5 20
TS T4
0 | 32
T4 €D
sC €8
7E 20
79 €8
{1 £0
T2 65
&8 &5
12 01
o
od 0o
ot
Dl 00
==

. 25

47
;|
o1
o2
ol
b2
uli
ul)
uli}
D4
=11}
el
L
T2
EE
£
20
43
&4
IiE
T
g3
ar
T4
£0
6
20
oo
[*L]

B

41
i3
og
ol
(=5}
=L
oL
og
(el
o]
CE
(L
&5
Lk
73
Ta
13
&F
aF
30
L1
EL
("L
L1
Z£0
63
g7
02
L
(a1
D
09
(ali]
gq
(L

3z
a5
oa
(ol
= |
=L
O

iF
oD
0z
P2
og
L
B2
T4
20
&E
LT H
]
oa
E3
EX
]
210
i
61
Ed
14

4ah
&
i3
o9
11
=1}
eli}
21
oo
oa
e
oo
T4
15
72
g4
&4
[1H
3
LT
EF
I3
6L
&0

48
i8
0ag
0o
0a
09
i
LT
a7
na
=]
09
4D
T4
65
&1
65
6F
43
T4
&D
(1]
70
L]
0
63
oa
0g
2
B2

cERRSE

4E
bl
g
oo
01
g
a2
od
ne
oo
RE
ad
ai
HE
55
T4
Ta
&GE
a8
T4
&D
Ta
0
a7
od
L]
RS

o1

L1
-

13
13
13
i3

-
o

=2

20
&f
O
oD
[l]
55
O
[l
et}
0D
DB
o
T
72
74
&1
L]
T
&1
T
&F
ar
&=
&n
S0
2
aF
1&
24
24
24
24
24
24
o

Let's examine the bytes highlighted in blue.

Exploring IMG Format

54
]
BF

e
od
oo
og
L
FF
og
a1
T3
&D
20
43

.1.
i

3R
SE
&2
61
TH
T3
o1
o1
1
iF
0é
15
T
4D
o

52

&3
aF
jali]
Qe
a2

2D

ol
ia
sl
o
al1]
¥
O
]

ali}
24
52
ol
ag
a0
nli}
oz
{uli]
10
jal!]
70
=0

DE

07

14 GRARMIN TRE -O»
el 'l =l guic pRT -
Sig T.L.E R

EEE KRR iy e
[..---— -uI-l --n.
wo oy iviun kBT
.-F“.mflﬂnw' 4254
........... _th
StreecMap and co
RCribuTors ‘WWwW. o
PARSETrSSTRAR , g
HMup datm licsns
&l undesr Creativ
e Qofmens REtCib
ution Fharchliife
Z2.0-htcp:/focrea
Eivassrmane. aeg)
lipensasy—anf2
B -HaAp GEEATEd
with rkmap-r1ial
L] ‘Frogram
released gnder ©
he CcRL-_@ 44 b
ol s g o
- --Bgllle € -
Bl Syl oL g
- -J-Byllls-g| 4 -a
B -Sgoliste] | -1
4w Bl sTe =k
Hoo-SydlisHd & -
waage 5t =

11

The table below shows you what these humbers mean:

code pois Indexes polylines| polygons| Pointers in
pois RGN

subdivision
10 0
20 0
40 0
80 0
Co 1
DO 2
EO 2
FO 3

Notice that the last subdivision contains all the element©)&thd so we need (4-1) 3 pointers.

Have a look at the picture below; you can see the RGN sghdilts at C0O0 .

Offset &15 (&C15) (4 bytes) always points to the statheffirst subdivision chunk , ie it starts at
7D (C00+7D).

This number is underlined in blue.

Now look at C7D : underlined in green are 2 pointers , 28 00 afd 3%ach pointer is always 2
bytes long .

Next, underlined in yellow we find some pois, ie the fins¢ is 64 00 00 80 5E FF BD FF 17 —
more later.

Question How do | know there are only two (green) pointers? Why B806Aot a pointe?

We know , because in TRE where the pointers are kept, we fhisnslibdivision to contain &D0
types of elements , giving us 3 elements and hence 2 pointers

Exploring IMG Format 12

Start of Subdivisions in RGN + &29

The first 3 bytes show pointers to a subdivision in the RGN Remember to add the offset found
at RGN + &15 to each of these values.

subdivision Offset Type of Number of Zoom level| Real map
Data Pointers in Levels
zoom chunk

0 000000o0r0 0 0 Al 5

1 000000o0r0 Co (2-1) =1 B1 4
2 67 00 00 or &67 Cco (2-1)=1 C1 3
3 9b 01 00 or &19b DO (3-1)=2 D1 2
4 12 04 00 or &412 DO (3-1)=2 El 1
5 C8 08 00 or &8C8 DO (3-1)=2 E2

6 etc etc etc F1 0
7 etc F2

In our example, we should find a new subdivision at offset 67, MR&7/D + &67
The next new subdivision is at RGN+ &7d + &19B etc

We have named the levels A — F for the sake of glarit
We can see that zoom level ‘E’ has 2 pointers, and zoeghfehas 5 pointers , remember the
above found sequence: 1,1,1,1,2,5

Important: The subdivisions in all mapevels apart from tsiedae have 16 bytes; all subdivisions
in the last level, in our case ‘F’, have only 14 bytes.

To obtain the address for each subdivision we add the aff§@@IN + pointer found in
(RGN+&15)) .

Example: in our case subdivision 5 has an offset of &8C8 . SuppBSEN starts at &E00 and the
offset pointer found at EO0+&15 points to &7D
This subdivision, therefore, is found at :&8C8 + &E00 + &7D

Note: the size of a subdivision appears to be a cripgathaps that is why IMGs created using
cgpsmapper seem to include a subdivision for almost every highway!

Exploring IMG Format 13

Grouping subdivisions into map levels

We mentioned earlier that maplevels are groups of subdivisfandy we could find which
subgroups belonged to which maplevel . Fortunately we can, buimNtb& RGN subfile.

The information is found in TRE offset 0 x 21 .

5,F1,0,
It contains information about maplevels, not where they are, 4,101.,0,
but how many there are and also how many subdivisions 3,12)1,0,
each map level has and also its resolution(bits_per_coord). 2,1411,0,

1,16,2,0,
It doesn’t actually give you pointers to an address in the RGN 0,18,8,0,
but the 3rd column (green) indicates the number of subdivisions

in each maplevel.

So we can see that map level 6 starts at subdivision 7

maplevel subdivision

1 1
2 2
3 3
4 4
5 5

6
6 7

8

9

Exploring IMG Format

Below, an IMG file with 10 subdivisions and maplevels O to 5pléeels 4 & 5 both have 3
subdivisions. Maplevel 0 contains no elements, Maplevel 1 only pef/(40) etc.

Highlighted are the contents of subdivision 119F at maplevel 4 .
Notice FO meaning pois,polylines and polygons. The creamy listiosrdll the pois and indexed
pois, blue polylines and purple polygons,plotted below including nodes.

Exploring IMG Format 15

‘the RGN block and beyond’

So, now we know how many map levels there are, but we still Boo how long the last map
level block in the RGN is.

Fortunately, Garmin gives us the size of the RGN blockpima the first subdivision containing
pointers and pol/highway/polygon data, to the end of the last one.

This is found at RGN + &2D

Now, interestingly there is some special data BEYONDlilisk not documented by Mechalas.

So, in addition to the subdivisions mentioned above, the RGNinsmttner chunks of data found
at pointers beyond &15.

Offset in RGN bytes
1d pointer 4
21 Length of block 4
39 Pointer to block 4
3d Length of block 4
55 Pointer to block 4

Some imgs store highways with types &100+ in the ‘green’ blo¢kese types are used to perform
overlays ; this in theory ensures that certain highwapsigiges, when given types &100+, acquire

the highest draw order and can overlap say Motorways. Thispfne reason does not always
happen. More later. — see Polylines

Orange block is reserved for polygons with types &100+ - see &udyg

Exploring IMG Format 16

Locked TOPO maps

You may find that these locked maps do not display the word ‘Gamranhex editor. If so, data
needs to be unscrambled. Find the first hex number and us®©®Réunction , ‘xorring’ every byte
by the first byte found. This will , ofcourse, still keep fie locked, but at least it's readable.

Locked TOPO maps have the subdivisions pointers in the TRE eadrypt
(For those in the know, bytes &24 - &27 are used to unscramileotbhm level chunk and replaced
with new values)

This means you need to guess where each zoom level chunlasthesds in the RGN. This RGN
data is itself not encrypted, so you can still read tis¢ RGN map level chunk, including its
pointers, however you have no idea where it ends.

The problem is that pointers could be read as POls etc andgpoie mistaken for polylines.
However, you could in theory when parsing , build in, besticinarios to check if the next piece of
data is a pointer, a POI or a polyline given the factdbatdinates couldn’t suddenly escape the
given boundaries.

If an IMG file contains pois,polylines or polygons with extentigeks, ie 0x100+ (see below) ,

then these can be read and plotted without any problems.peigers to different subdivisions
remain unscrambled — see TRE?7.

Exploring IMG Format 17

LBL

Where are all the names of streets,pois etc kept?

They are stored in the LBL subfile. However when you exraritj you more than likely won't
recognize any labels ,as they are all encrypted.

Lets examine a POI data stream found in a RGN zoom level

46 DF 00 00 49 FF BB FF 02

The first and last ‘green’ byte denote type and subtypehis®Ol’s type is 4602

The next three yellow bytes DF 00 00 are and offset in LBL pame= precisely in LBL1 which is
an offset from the start of the LBL subfile.

However, bits 7 & 8 in the ‘third byte’ are reserved for stimng else:

Sometimes the third byte is 80, which implies that it is &sind in the NET subfile if it's a
highway. More importantly, if the third byte is a 80,40 CQC82etc then the point€fOES NOT
point to an offset from the beginning of the Ibl1 labels/nameskblnstead, it points todifferent
block where other information is found, including a pointer toabellIbl1 block — more later

For our purpose, we could just look at the first two bytes (Ysurseed to check if bits 1 to 6 are
set in the third byte - only used if labels are found a lwag from the beginning of this block).

It tells me that the name of the poi is found at offset 00B&DF) . The other 4 bytes following
the ‘yellow block’ provide the x and y coordinates.

However, it is not an offset starting from the beginning efltBL subfile.

Instead, it is an offset from where the label blockhimithe LBL starts ; the start of this label
block is defined in LBL + &15 or LBL1.

Each name in the label block ends with 00 if it's notoeied.

Let’'s have a look at an example:

Exploring IMG Format 18

We know all label data starts at offset &15 from the beginnirtge LBL subfile.
Strangely, it points to 00 (LBL + &D1). Add 1 and you getseguence OC F5 4E 51

When you cross-check in the right column, below Default ggust shows gobbledy gook.
Let me tell you that all the values underlined in gresdr’ COUNTRY’
It looks as if the word is zipped in some way and most liBdijt encoding has been used.

First you need to change each of the 4 bytes into a bioanat of zeros and ones . We don't
know if it's just 4 bytes, it could be more — see later.

In basic this would be:

Forn=7to0step-1

If (byte and 2*n) = 2 ~n then string=string+"1" els e

string=string+"0”

Next

Do this for each byte until you get a string which begines tiks :
000011001111010101001110..........

Now split them into chunks of 6, as this is how most ofikth@&s are encoded.
000011 001111 010101 001110

Chunk1:00 0011

Read fronright to left and you get:

11000 or 220+ 2 "1+ 0+ 0+ 0 =3 which is the thattér ie ‘C’

Chunk2:00 1111
Read fronright to left and you get:
111000 o0r 270 + 271 +2" 2 +273+ 0+ 0 = 15 which is the [Eitér, ie ‘O’

(The reason why we had to add 1 was because in our exdrapffidet (+ 1) was given in the
Country records offset at Ib + 1F- see further)

How do we know we’ve come to the end of a word? Garmin tieuegh of this: if the 6 bit number

is > &2f then you've reached the end of your label. The née Istarts in the next byte, so any
superfluous bits are just discarded and not used as the begihtiiegnext word.

Exploring IMG Format 19

Lbl pointers NOT directly pointing to Ibl1 label bl ock

Pointers are always 3 bytes, but sometimes the third bytareB882,C0,C6 etc
If bit 7 of the third byte is set then your Ibl label refersan offset in NET1 where you can find a 3

byte pointer to LBL1. Remember : Pointer $hyte + 39 byte + (3 byte) mod 32
Netl starts at offset 0x15 from the beginning of the NET kubfi

Example: 60 00 C1

60 00 01 (&C1 mod 32) points to offset &010060 from the NET1 blocke Mexrwill find a

pointer to the main label block. Bit 7 of this byte may dleset! So, pointer NET1 Bytel+ NET1
byte + (NET1 byte 3) mod 32 should point to somewhere in LBidn é it is a blank label.

There are several offsets/pointers found in the LBL header :

LBL Offset size
1F Country
2D Region
3B City
49
57 POI
64
72 ZIP Post Codes
80 Highway
8E Exit
9C Highway data

Exploring IMG Format 20

Look at LBL + 1F , underlined in blue: it reads 58 01 - soebfifls &158 from LBL, ie &1558

There you will find underlined in green a 3 byte pointer 00D0 , ie 1 and this is our ‘elusive’
offset.

There are only 3 bytes to look at (see green 03 at &142#)erd were 2 more regions then the
length (03) will be multiples of 3, ie 06.

Next, there appears to be some more pointers at 155B, underipellow.
This is a yellow 5 byte chunk, 10 00 00 01 40

The first 3 bytes point to the label data segment (ie th& Jpext 2 bytes are to do with ‘city
information’

Symbols

If you parse the LBL1 from the label offset you should gethallabels. When labels are encoded
in 6 bits, the start of the next label is always the netd.by

You may get funny letters but check Mechalas’ section orbeytatters— it's fairly straight
forward except that Ox1B should be 0x1C.

More than 1 label in NET
A highway can have up four label pointers in NET, ie

6C 00 00 72 00 00 91 00 00 12 01 80

The last label is terminated with bit 7 being set , i@88ur case. Thia shows 4 labels, one starting
at 62 00 00 and the last at 12 01 80.

This principle of the 7 bit when set terminating a list is used in other subfile well , ie NOD.

For more information regarding other highway properties see NET.

Exploring IMG Format 21

POls

Points of interest all have a type number and a subtype numltgoe = 30 and subtype=01 . The
subtypes are supposed to be subsets of the main type: ie p&m é&ynenity restaurant and subtype
= French cuisine

The length of each block varies depending on whether the subtype not.

POls with subtypes

type Lbl | Lbl Il Lbl 11 longitude latitude subtype

POls with no Subtypes

type Ibl Ibl Ibl longitude latitude

How do we know if the poi has a subtype or not?

Answer: if (Ibllll and 128)=128 then it contains a subtype.

This is where Mechalas is incorrect: it is not the lif &irst byte, but bit 8 of the"byte.

POl labels

If bit 7 in the above LBLIII block is set then the labfgds all pois are kept in a block named LBL6
ie found at LBL + 4 byte pointer at (LBL + &57)

This marks the beginning of series of 3+ byte chunks, the3fingtes of each chunk shows
pointers to LBL1 label blocks.The other bytes indicate presengkarfe-numbers etc.

Generally,we find 3 byte chunks showing pointers to LBL 1
Example :

POI: 46 39 00 CO B5 FD 53 FE 11

Exploring IMG Format 22

Bit 8 of the Ibllll pointer is set, ie &CO : this meansas a subtype : Bit 7 is also set ; this means
00 39 is pointing to LBL 6 . (&C0 = &40 + &80)

Now start from the beginning of LBL 6 ,underlined in blue and &84 . It points to 3F 00 00

This,finally, is our Ib1 pointer and hey presto we getrtiime of an amenity at offset 3F from
LBL1!

POls with extended types

These are special POIs which may not show up on your GPSpsoMi@e/Basecamp.

They could have types of 0x101, 0 x 10101 etc and are found at RGN4det &5 with length of
block at RGN4 +&68 containing additional information. The lengthaufh block is variable
depending on bits 5 - 7 of th&Dyte .

In its simplest form its structure is:

Type + | Sub type latitude | latitude| Ibl Ibl Ibl
&100 mod 32 | longitude| longitude

Example i 14 35 45 00 23 01 06 2E 00
This is a poi with type: &100 + &14 + &35 mod 32 = &11415

It has a label (yellow) at offset &2e06 from LBL1.:.
We know it has a label as bit 5 was set , ie &20 + &15

Another example encountered has bit seven set:

Example

02/Al1 90 FF 9F FF CD 00 00 EO 09 00 00 00 00 01

The bit stream following the yellow Ibl label is at presentesc It is possible that EO marks
beginning of a possible bitmap stream/index with 09 beingyeafta next 3/4 bytes a pointer to its
location. (The MDR has similar 2 byte codes , telling us hamy bytes we should expect next, ie

number of characters and number of bytes to denote the index.)

For more information see TRE7

Exploring IMG Format 23

POLYLINES

Polylines ,like polygons, have a more complicated variableheng

The first 9 bytes are fixed :

0 1 2 3 4 S 6 7 8

type Ibll Iblll (bl longitude | longitude| latitude | latitude | length

Because the highway node information can exceed 256 bytessaéankenow when the length is >
256 and when it is not.

Answer: if the (type byte and 128 = 128) then we know the leagtbtermined by 2 bytes.

The first 8 bytes gives us the starting point coordinates dfitfievay — however, it's as an offset
from the centre of a box defined by each subdivision in TRE .

Polyline Labels

If an IMG is not routable then the 3 LBL byte chunks behave néyraatl show pointers to Ibl 1

If bit 8 in the above LBLIII block is set then thdsgghways are routable. In which case the labels
of these highways are kept in a different block named NET@ured at NET + 4 byte pointer at
(NET + &15)

Railway lines , (type 0 x 14) are not routable (in theorypBt should not have bit 8 set.

Exploring IMG Format 24

Polylines withextended types 0 x 100+

These are located in RGN3 offset &39 and are not routaigth of this block is found in RGN
offset &3d.

Their structure is quite different from polylines with type8 x &100.

0 1 2 3 4 5 6 7+ 3 bytes
Type + | Sub type| longitude| longitude| latitude | latitude | pointer | length | Ibl
&100 mod 32 +data

Example : first 2 bytes are : 12 24

Add &100 to 12 and 24 mod 32 = 4 : this makes it type 11204

If the second byte ,ie 24, has bit 5 set (ie &20) then the pelyias text ; in which case ,the 3 byte
LBL pointer is stuck at the end of its data stream.

No text :

003F8590: OF 04 23 FF 1000 11 30 A6 10 12 85 F0O 02 01

With text:
0O03F8590: O0F 2423 FF 1000 11 30 A6 101285 F0 02 01
0O03F85A0: 38 70 02

Length of a polyline type 100+ block

Byte 7+ defines the length of data to draw the polyline.

In the example before length is highlighted in green : ie &ldecimal 17
If byte 7 is even then an extra byte will be used toutate its length.

In our case it's odd so only one byte is needed.

Single Byte Algorithm: (byte 7-1)/ 2

Two Bytes Algorithm: (byte7 + byte 8 * 256) / 4

Note: the length refers to the data steam to definedimplete polyline, so it remains the same with
or without LBL pointers. For more information see TRE7.

Exploring IMG Format 25

POLYGONS

Data structure is the same as for polylines.

Polygon Labels

Again see polylines

Polygons with extended types 0 x 100+

These are located in RGN2 offset &1D ; length of this blsdiwind in RGN offset &21.

Length of a polygon type 100+ block

See Polylines.

Exploring IMG Format

26

Plotting Coordinates

Finally we come to plotting our elements.

The coordinates are stored in 2 byte offsets from the cenyr@uofcurrent zoom level map

Earlier on we gave the following example 85 F.1.0
for map zoom levels found in TRE where 41010
the last two digits determine the number of subdivisions 31210
in each map level. 2:14:1:0:
1,16,2,0,
0,18,5,0,

This tells us that we have 5 different map levels. Rebeg, at each level elements may be plotted.
The first level you encounter tends to be empty, not refegriogany elements and is used for
determining boundaries.

Look at the last level : 0,18 ,5,0

The second number (&18) is vital to the way elements artegldt is referred to as the bits per
coordinate (bpc)

The formula for getting latitude and longitude degrees : nigaunit = 360/(2"24)

24 (or &h18) represents the bpc

At each zoom level you swap 24 for the second number in our.tRel@member, this will be
different for each IMG.

In our case the various bpcs are : &F, &10,&12,&14,&16,&18 ,@asing the accuracy of the
coordinates.

Plotting POls

64 15 03 CQ 1F 00 1C 00 OF
You need to add these two byte chucks in green to the 3abiytelé + longitude centres defined in
TRE +&29 — see earlier. Add the first two to the latéiahd the second 2 to the longitude.

Next, multiply each by 360/(2"24) to obtain degrees

Exploring IMG Format 27

Check if the value of your two byte chunks is >&7FFF:

If it is, then the result is negative , ie -(65536 ued)

Plotting Polylines

Before attempting to plot polylines or polyhedrons, you must beitanal some extent with
Mechalas description of bitstream parsing. This is heauyggbut a few additional examples may
help:

06 EO 01 00 5A FF 76 RE 11 23 A5 C2 52 93 4A 77 EA 5C FO FO 8C 21 2A 5A 48 14

This represents a residential highway (06) with LBL1 t€f0a01 EO and longitude and latitude
starting at offset 5A FF ,76 FF respectively from therecot your zoom level map.

We know the start of the highway , but not the end, or any othes rabaleg its line. They are all
compacted in a bit stream, highlighted in blue.

The length of this bitstream always follows the latitude layt is highlighted in green :&11 ie 17
bytes. The next byte,23, in yellow tells us ‘something’ about hawynbits are grouped together to
determine our longitude and latitude. This may not be the samber — see further.

So far, so good. Now the fun starts:

We need to ‘translate’ the bit stream into binary, reattiom left to right , starting at A5 and
finishing at 01. Lats and longs are now determined by bits, by@3s, to save space . So we now
have to find out how many bits are needed for each!

Part of thisinformation is also held in the yellow byte, part in tingt ‘blue’ byteof the bit stream.

the first bitstream byte

Before we examine the meaning of our A5 here are 2 examiliest bytes of a bitstream, starting
LSB, from bit O .

a) 101100101 etc
b) 111001101 Etc

The first bit is most significant;
if it is set then
1) all the longitudes in this line have the same sign ;

2) the second bit tells you whether they are all positiver(@ggative (1).
3) The third bit tells you about latitudes; if set then the fobittlgives you the sign

Exploring IMG Format 28

you can see that both a and b start with the first andliitedbeing set (=1)

Longitude | Longitude | Latitude Latitude Effect

1= Has 1=- 1= Has 1=-

same sign |0 =+ same sign | 0 =+

1 0 1 1 Going east
and south

1 1 1 0 Going west
and north

Now examine the first byte in our example above , ie A5:
In binary this is 10100801 bit 7 to bit 0
Next, reverse the bits and we see that it startsiililip 0101 bit O to bit 7

This implies that longitude is always positive and latitisdgdsitive as wel L1 0101 would
have signified all values being negative)

How is this going to help us to determine the bit lengths ofaditnde and longitude?
If it is always positive or negative the shape of the térals to be a curve. If you want to check

your code look for power cables or motor ways, they should genarahéth a 4 bit sign
determinator.

The ‘official’ algorithm:
Mechalas gives the following formula:

Longitude = 2 + base value + longitude sign + extra bitstsa LBL (butsee further!!!)
Latitude =2 + base value + latitude sign + extra bits sé@t LBL

| have found this to be incorred@h my opinionit is:

Longitude = 2 + base value + longitude sign
Latitude =2 + base value + latitude sign

If the extra LBL bits are set then add 1 bit- this bit seems indicated the beginning of a line if set
(ie 1).

Exploring IMG Format 29

When the Extra bit is set additional information about thevaay is held in the NET and NOD
subfile regarding speed and road type. It also means thaigtheay is routable.

If the sign of latitude is always the same then thaulgisign value = 0 else itis 1. Same applies
to longitude.

In our example all longitude and latitude values remain the s always positive or always
negative.

Let’s return to the base byte (yellow above , ie .LEF 1AR3.) : ie 23 :

1% ‘digit’ refers to latitude, second to longitude (MSB t8R)

Longitude =2 + 3 (base value) + 0 =5
Latitude =2 + 2 (base value) +0=4

If the base value is higher than 9 , ie B4, 6A, or A ¢hen see Mechalas.

Exploring IMG Format 30

Starting to parse bitstreams

Next, we start parsing the bit stream and begin withittielit, because we've already used the
first 4 to determine the sign for our coordinates.

Remember, our starting point is not always tféh ;it could be & or 4" ; see following
examples.

In our previous examples the purple bits always were 4 bitsv, Blome examples when this is not
the case.

Example 2

6o 1001 ...

The first two bits are as above,ie 10, but then latitugetiso 0 (3 bit) meaning its sign is variable
and could be positive or negative. There is now no need4bbi. We know that our longitude
is always positive, and our latitude is variable, both pasaind negative — total number of bits = 3.

Longitude =2 + (base value) +0+0
Latitude =2 + (base value)+ 1 + Q (1 indicates vhking variable)

We start parsing after th&'it, ie 1001...

Example 3

0@b 1011 ...

In this case the longitude bit starts with zero, meaninggisis variable

Longitude =2 + (base value)+ 1
Latitude = 2 + (base value) +0

Again we start parsing after th& Bit , ie 1011
Example 4
@6 10010

Here both longitude and latitude are 0 meaning both signs aablea; no more bits needed to
mark our signs.

Longitude = 2+ (base value)+ 1
Latitude =2 + (base value) +1

Parsing starts after th&%bit.

Exploring IMG Format 31

If you are writing your own code it is recommended you look alastesubdivision containing
polylines as defined in TRE, as we don’t need to bother abfhifting the values — more later.

(There is a minor binary value error in Mechalas descripgidnx ab)

We now know the length for each longitude and latitude chunk andaraparsing; remember the
values are added to the coordinates of the centre of yqueveablock — see plotting POls
Returning to our example

06 E0 01 0Q'BA'EF 76 FF'11 23 A5 C2 52 93 4A 77 EA 5C FO FO 8C 21 2A 5A 48 14

1) start with %" bit of your total stream

2) longitude = 3 bits and latitude = 3 bits: so group the resbwf jitstream into sets of 3's

x of point 1 : [BAMEF in degrees: (FF5A + centre longiitda60/(224)
y of point 1 : | 76 FF in degrees: (FF76+ centre latith@§)0/(2724)

x of point 2 : x=x + decimal(first 3 bits) in degrees :* 360/(2"24)

y of point 2 :y=y + decimal(second 3 bits): in degregs :360/(2"24)

x of point 2 : x=x + decimal(third 3 bits) : x * 360/g2)

y of point 2 :y=y + decimal(fourth 3 bits) : y * 360/(2"24)

Exploring IMG Format 32

Plotting Routable polylines

If bit 6 of the 3 byte of the Ibl pointer is set then the extra bit =1

In its simplest form 1 extra bit is added to the Latitude anly an extra bit is added to the start of
the bitstream. Interestingly, not all highways of the saype in a subdivision are marked as
routable, perhaps they are at the end of the map boundary, or nattednne

example: bitstreams starting with 1010 ; longitude in yellatitude in green

100 1101111 101 1001 without routing (latitude sign is variable)

100 01101111 11011001 with routing (latitude sign is variable)

Notice only 1 extra bit per coordinate¥/e have not come across examples of extra bits being
added to longitude as indicated by Mechalas

Importantly and not mentioned by Mechalhe extra bit is added to the beginning of each

longitude.

It is not clear why the extrabit is sometimes 1 and sonesti O , as it is not a simple case of
marking a junction or not.

For more information see TRE7

Exploring IMG Format 33

Left_shifting Coordinates

The more you zoom out , the more sparse the map is going t@be&ovi't need to plot all POIs
and your highways require fewer nodes, so the length of eaaleaitstends to be short.

Also, crucially, you can reduce the accuracy of your coordirzatdsave bits.

Bits_per_coord

Map Bits | subdivision| subdivision
Level per
coord

&F
&10
&12
&14
&16
&18

oo}
OR[N w8
GILNITEY TR
o|o|o|o|o|o

When we convert our data to degrees we use the formula:

Long= x * 360/2"24 Lat: y * 360/2"24

The third column, bottom row contains this number, &18 ie 24 dec
Each time we zoom out we use a different factor: 16,14,12,10,F

So, in our example, when we zoom out, we need to multiply our cotedibg: * 360/2"22

Left Shifting

However, each time we zoom out, before we obtain our degveaseed to left shift our
coordinates using the following formula: 24 — bits_per_coord.

Left shift means ‘increase’, in the sense that positiveines more positive and negative more
negative.

POI Example :

64 15 03 CO 1F 00 1C 00 OF

Supposing this POI was found in a maplevel 2 : we read offiat@iir bits_per_coord : &14 (dec
20)

Exploring IMG Format 34

First change 1F00 into bits. 1111000 , starting from bit 0 to 7
We left_shift by (24-20) ie 4 to get 00001111000: 576 or &h240

Take care when numbers to be left_shifted are negatigd-H&7.

Note: you need to left_shift all two byte valuebeforeadding them to the current coordinates
if resolution is < 24 .Three byte values are NOT left_shifted.

Exploring IMG Format 35

Plotting Polygons

Polygons are parsed in the same way as polylines.

You will notice that most polygons are not drawn at the highest #eweeii sublevel and that lower
zoom levels generally contain a bounding box of &4B or 4A.

Interestingly and perhaps not surprisingly ,shapes are notlclose

Special cases in a bitstream

Mechalas has given us some valid pointers to how we ngedde a bitstream chunk with ONLY
its last bit set, ie 001 or 00001 etc (LSB to MSB).

However,unfortunately his description is somewhat incomplete.

Only cgpsmapper and topo maps seem to use this features smith experimenting with
cgpsmapper to unravel its obvious complexity.

Use gpsmapedit to create various zigzag lines and savenpgs Then export using cgpsmapper.

Regard 0001 etc as a flag to indicate special cases te tagger numbers,either negative or
positive.

The sign value is determined by what follows!
Examples: (from LSB to MSB)
a) 00001 001001 special case followed by negative number .
This has the effect of increasing fitsgativevalue - documented by Mechalas.
b) 00001 001010 special case followed by positive number
This has the effect of increasing issitivevalue — not documented.
Value = 24+ 20
c) There is an additional case,also undocumented , when ,sayisG0dwed , often several

times, by another 0001 , until a lower bit is set. - this wrdyks if the extrabit is not set (
information given by Attila)

Exploring IMG Format 36

For example:

0001 0001 0001 1100

This creates a value of 273 (0001) + 273 + 2”3 + 3 (1100)
A visual example:

The following bitstream of a polygon contains somewhere in the msddie consecutive
segments with last bit set only.

0000001 0000001 0000001 0000001

3F 44 94 D9 54 B3 C1 CF 10 20 FC 52 B4 9F EE 55 53 EC 62 34 C8 OF
FC 43 ED 02 81 43 AE 30 81 DC 0C 92 45 4F 80 1B 30 18 8B 43 8B 20
3B DC 00 24 5B CB 06 00 81 40 60 00 08 04 02 4B 00 00 10 58 04

(length=&3F ,base value=&44 etc)

And looks like this with polygon closed:

Exploring IMG Format

37

TRE from 0Ox4a

Offset description bytes

Ox4a Polylines Resolution Block 4

0 x4e Length of block 4

0 x52 Length of record block (ie L= 2) 4

0 x 54 Number of L+1 bytes ? other length 2

0 x 56 other length ? 2

0x 58 Polygon Resolution Block 4

0 x5¢c Length of block 4

0 x 60 Length of record block (ie L= 2) 4

0 x 62 Number of L+1 bytes ? / other length 2

0 x 64 other length 2

0 x 66 POI Resolution Block 4

0 X 6a Length of block 4

0 x 6e Length of record block (ie L= 3) 4

0x70 other length ? (ie L=5) 2

0x72 other length ? 2

0x74 MAP ID also used in mp section of gmapsupp 4

0x78 4

0x7c Pointers for subdivision for extended elements TRE7 4

0x 80 Length of this block 4

O0x84 Size of record ie 0 x Od 2

0 x 86 2

0 x 88 2

0 x 8a Extended types and draw order pointer TRE8 4

0 x 8e Length of this block 4

0x92 Size of record 2

0 x 96+ Values used to encrypt data based on map-id 2

0 x 98 2

0 x9a-AD| encrypted key last 4 bytes get set to zitkeo @ecryption ! 19
TREL1 gets decrypted - firts line of mapsets

0 x ae TRE 9 4

0 x b2 Length of block 4

0 x b6 Size of record (0 x 5) 2

0 x b8 2

0 x bc TRE 10n block 4

0 xcO Length of TRE10 4

0Oxc4d 0x01 2?

0 x c6 4?2

0 xca NT TRE11? &1A 4

0 xcE Must be 2 as CF as a new header 2

0x CF 4 byte parameter 4

0 xd3 Parameters 03 00 2

0 x d5 A block 4

Exploring IMG Format 38

0xe3 block 4
0xe7 size 4
0 xeb Record length (6) 2
0xed Block looks like a pointer or length 4
Ox f1 block 4
0xf5 length 4
0 x fb block 4
0 x ff length 4
0 x 103 Record length (?) 9 2

See headers up to &110

Some non NT imgs have a TRE header with length 0 x cadsttahare O x bc long.

The latest 2012 TOPO imgs have headers up to &da

No idea what TRE10 or 11 represent.

A lot of the TRE is now clear and documented ; but thesélis lot to do!

To give you a taster ,the PIDs are kept in a single bittesay EF down to E6 incrementing the
PID and EO to E5 decreasing its value! Offset rule vanekis linked to values stored from 0x96 .
Similarly with the FID (2 bytes) , proceeding the PID (1edyfThere is no problem obtaining both
values in a gmapsupp as they are kept in the mps section.

Exploring IMG Format 39

TRE7

Each block of extended elements, contains elements at vaesulstions. So, if your IMG
contains extended pois or polylines etc then they too are plotiiffieaent resolutions.

Trouble is, that without any pointers, it is impossible to plotaledended elements correctly as
they may need to be left_shifted

Fortunately, TRE7 provides essential pointers for each sulwmtivikiterestingly, in locked files
these are not scrambled!

Pointers for each subdivision are found at 0x7C offset from TRIEEd TRE7, usually in blocks
of 13. Length of this block at 0x80

The size of each block is defined in TRE + &84 , ie &0D
So, the length of each group of extended pois is determine@ linetinning of the next offset or

then end of the block itself. Each offset is alwayswated from the beginning of each block of
extended elements.

Polygons 4 bytes Polylines 4 bytes POls 4 bytes Refers toemwohb
element types in nxt
subdivision (0 - 3)

0 means nothing to
follow

3 means pois polylines
& polygons)

1%

example of tre7 (magenta number of elements in next subdivision)
0000000000000000000000000
0000000000000000000000000
000000001A000000000000000
590000006F000000000000000
72030000D1000000000000000
E7060000BA010000000000000
350B000086030000000000000
720D000033040000000000000
90100000E1050000570000000
F3180000F1090000A50000000

OQWWNNNNDNEO

However, it can be more complex particularly if sizeemfords are >13. In fact it is not clear what
additional information has been added. Again, then elemewtitodj doesn't seem to follow the
above mentioned rules. As extended types are designed for meajise the additional information
may include min max depths for each subdivision, as in the BidNle.

Exploring IMG Format 40

example 2

00000000000000000F000000006032000024400000C2870100F 4250200
00000000000000000F000000006032000024400000C2870100F 4250200
00000000000000000F000000006032000024400000C2870100F 4250200
000000000000000007000000006032000024400000C2870100F 4250200
000000000502000007000000006032000024400000C2870100F 4250200
000000007C04000006000000006032000024400000C2870100F 4250200
00000000DD04000004000000006032000024400000C2870100F 4250200
00000000E505000007000000006032000024400000C2870100F 4250200
00000000D808000004000000006032000024400000C2870100F 4250200
000000004F09000005000000006032000024400000C2870100F 4250200
00000000C409000005000000006032000024400000C2870100F 4250200
00000000060A000004000000006032000024400000C2870100F 4250200
000000003B0OA000004000000006032000024400000C2870100F 4250200
00000000580A000004000000006032000024400000C2870100F 4250200
00000000580A000005000000006032000024400000C2870100F 4250200
00000000770A00000F000000006032000024400000C2870100F 4250200
00000000EBOC00000D000000006032000024400000C2870100F 4250200
00000000660D000000000000006032000024400000C2870100F 4250200
00000000660D000004000000006032000024400000C2870100F 4250200
9A030000BA0D00000669020000A2320000CE4EO000358A0100F 6250200
24070000270E000007B6040000DE320000ED5400003D930100F 6250200
780A00004E10000004F6060000383400002A6900007B980100F A250200

TRES

This block located at TRE + &h8a contains all the extengeelstand their draworder found in a
particular IMG file. Each element data can be 3 bgte$ bytes long.

Example: &10F08

Typ mod &100 draworder subtype ?

F 2 8 0

An element with the lowest drawnumber seems to be at the highektie the top,
The order in which they are plotted is:
Polylines ,followed by polygons,followed by POIs. Interesting Bats can have a draworder!

an example of TRE8

1120
1130
1140
6110
6530
6540

TRE9

Nothings is known about this section; if present , there only seebesdne record of 5 bytes

Exploring IMG Format 41

NET subfile

Here we find additional data concerning routable highways ,siith Eength , its direction (if one
way),the maximum speed allowed, and its house address infomifainy.

The header looks like this:

NET Offset | NET Header
00 Header Length
02 GARMIN NET
15 Pointer to beginning of NET1
19 Length of this block
1D Road definitions offset multiplier (power of 2)
1E NET2 Segmented Roads
22 Length of this block
26 offset multiplier (power of 2)
27 NET3 Sorted Roads
2B Length of this block
2F Sorted roads record size
NET1

We've already discussed how highways can have up to 4 |diedgollowing table shows a
‘typical’ road definition entry in NETL1 ; the length of eadtord varies depending on number of
labels,number of subdivisions the highway is plotted and whethas iaddress information.

ltems Bytes example

labels 3 per label 12 00 00, 45 00 00, 24 01 81
Road Data 1 &44

Road Length 3 3201

RGN_index_overview 1 per record 1,81 (2 records)

Highway pointer 1 0105, 0106

Subdivision number 2

House number blocks |1 Set if bit 4 or Road Data is set
Street Address info block| varies

NOD length of pointer 1 lor2

NOD?2 offset 20r3 2 or 3 of NOD length or pointer=2

Exploring IMG Format 42

Example:

Image shows 2 highways in NET1

Highway 1 Highway 2
LBL 60 00 80 68 00 80
Data 44 44
Length of Road 06 00 00 0B 00 00
RGN 0181 0181
Record 1 01 at subdiv 6 2 at subdiv 6
Record 2 01 at subdiv 5 2 at subdiv 5
Length of pointers 1lie2 1
Pointer to NOD 2 00 00 07 00

Notice how 3 byte records 1 and 2 follow each other 881

Data 44 means : has NOD info and has bit 2 set , sebaléss Route definitions

In NOD 2 at offset 00 00 | find: a seven byte record

17 00 00 00 02 00 03 and

17 22 00 00 03 00 07

The first byte refers to the speed class and road type Mechalas

&17 is &10 + &7 ; the when translated gives me a max sp&€&8 mph with a road type=1
Te next three bytes are offsets from NODL1 , ie 00 00 00 and @2 00

This is followed by 3 bytes giving information about the numddeputing nodes in a highway.

Length of highways

Unlike stated by Mechalas ,you double the value to obtain lengtieires.

So the first hw was 06 00 00 which gives you a value of 12 matre the second, 0B 00 00,
produces a value of 22 metres. These values togetheheithax speed can be used to calculate
ETA.

Exploring IMG Format 43

NOD subfile

Mechalas offers some valuable information regarding the N@iiile, but unfortunately a lot of its
structure remains unclear.The NOD subfile is as the narpkeis about nodes and how they are
linked ;it only exists if the IMG is routable. | am gratetollRobert Vollment for additional pointers

regarding the NOD file structure although my findings diffemiany respects.

NOD 1
NOD 1 contains information about nodes, linked directly or intliyeS8ome of it still seems
unclear .

NOD 1 Node records
Block 1
Table Header Details of size of

each table

Table A Road segments
Table B Inter area links
Table C restrictions
Block 2 ,3,4
etc

NOD 2

NOD 3 Boundary nodes

The structure is quite complex; within NOD1 there are , déipg on the number of nodes, various
‘green’ blocks, following each other .

Each records block is often terminated by so called boumdeatys — these are used as links to
other IMGs.

Finding the length of each record can be quite challenging.
We can ascertain where records start from offsets fouN®ID 2 and NOD 3.

The header of each record begins with a pointer to otherstabA ,B or C.

pointer | Flags coordinateg coordinateg linked | Current | Flags A | Flags B
highway | highway
nodes | nodes

02 44 2E70FE | 481217 |05 07 6D 29

Exploring IMG Format 44

Pointer

The first byte points to the Tables Header — see below.

Flags at offset 1

There are several flags which are set to indicate spmmigitions

Mask Purpose

0x4

0x8 Marking a boundary

0 x 10 | Marking a restriction

0x20 |2 byte coordinates offsets instead of 3
0 x40 | Direct links

0 x 45

0 x 50

Any combination is possible but most frequently encountered are 44 or 4C

44= 40 + 4

4C =40+ 4 + 8, ie boundary nodes as found in NOD3

Direction Coordinates

These could be 2 or 3 bytes depending on Flag 0 x 10

Nodes Bytes

The two bytes after the coordinates indicate number of nodekighway as a multiple of 2 (?)

The first nodes byte contains the number of nodes (as l®udf a linked highway ,ie

(5+1)/2=3

The second contains number of nodes in current highway: (7+%4)/2 =

Flags A& B

Flag A is one byte and Flag B can be 2 bytes. Both alsoinanfarmation showing bearings

between nodes.

Flag A

Ox7 Destination Class
0 x 38

0x40 Going Forward
0x80 New Direction

Flag B
0 x 40 Inter area link
0x 80 Last link

Exploring IMG Format

45

Tables Header

There can be several tables headers within NOD1.

An offset to a tables header is NOT found in the NOD heaugead it has to be calculated.
Presumabily, this is because of the overwhelming number of nodsszamay contain.
Strangely each new ‘green’ block,except for the firgt starts with a tables header.

To calculate the start of a tables header you need to adtb&H6 end of a previous records block
and then find the nearest multiple of &40

Example: end of node records block :1C76
1C76 +40 = 1CB6
The next multiple of &40 is: 1CCO so it starts at 1CCO

This is a 9 byte header:

00 | 01 | 02 03 | 04 | 05 Table A| Table B | Table C

coordinates Coordinates number | number | number

Number indicates number of records found in each table. Becaulséabse contains records of a
fixed length we can calculate its total length and thuddgenning of the next node records block,
if any

Table A

0x00| 3 Bits 0-29: Pointer to NET; bit 30: no deliveryf BiL.: no emergency
0x03|1 Road class : bits 0-3: road speed; 4: oneway;rbdl class; 8: toll
0x04|1 RoadID

Each record has fixed length of 5 bytes:

00 00 13 00 12 RoadID =18
00 00 13 00 20 RoadID =32
00 00 13 00 2C RoadID =44
01 00 13 00 3E
01001300F3
00 00 03 00 32
00 00 11 00 44

Exploring IMG Format 46

NOD 2

It starts at NOD + &25 with length:NOD +&29
It does not appear to be accessed from any subfile.

0 1 | 2 | 3 4 5 6+
Road Offset into NOD1 mask Mask? | Node
classification bitmap

Its length is generally 7 bytes but depends on the first and’‘blask byte.
If the mask’s value is >8 then an extra byte is addedviery multiple of 8.
In addition, if bit 8 of the first byte is set, extra byteghtighted in grey are added- see below.

Examples:

17 00 00 00 02 00 03

03 25 59 DB 01 00 04

25 87 00 00 08 00 FF

8B 5C 01 00 08 00 FF 04 14

87 1D 2D 03 0B 00 FF 06 04 12

BB BO 5B 00 14 00 E3 F7 OF OC 09 40 00 OD OE
25 82 61 00 09 00 FF 01

03 3F 1A 00 12 00 FF FF 03

For road classification see Mechalas .

Notice how offsets into NOD1 can show masks in tfebyge, ie &DB - their significance is
uncertain.

Byte 4 acts as a mask for byte 5 or 6,ie gives you the nuofilbés to consider when examining
byte 5 (and?) or 6.

In our first example byte 6 contains 0x03 which in bits from LSB |diks11000000.

The mask value (2) makes us consider only the first 2viaitish could imply that this highway has
at least 2 nodes connecting to other highways, both of them set.

05 00 1B :11011000

This would tell us to count the first 5 bits; the idea i$ thaode will be ignored if a bit is not set,ie
0, so we skip node 3.

If this is true then the maximum number of nodes can only teed@,ercome this an extra byte is
added for each additional multiple of 8 — see last 2 examples

Exploring IMG Format 47

At present, the function of byte 5 is unknown but we surmisdtibanask is 2 bytes long to allow
for values >255

0 1 \ 2 \ 3 4 5 6+
Road Offset into NOD1 mask Mask? | Node | 04,08
classification bitmap |,0C

If 8" bit is set then the value after OC signifies the lenf#xtra bytes needed using a simple
algorithm: extra bytes = (value-1)/2

Example 0OC 13 (13-1)/2=9
9B 13 08 00 13 00 7F FB 07 0C 09 42 il s 30

A5 82 BE 01 17 00 F5 FF 7B 0C 13 41 ofSEGEENSE D 1E

The ‘red’ bytes are always ordered according to size nibti€lear what they mean.

Exploring IMG Format 48

DEM subfile

Elevation data is found and plotted in the DEM subfile. For ndoemation see:
Exploring_DEM.pdf

DEM Investigatoris a GUI showing all known values including base heights foin Gke.

Exploring IMG Format

49

Creating IMG files

There are several ways of creating an IMG file, asith its own personality:

1) using cgpsmapper

2) using MapTK

3) using mkgmap.jar
It all started with cgpsmapper, still in many ways thieg< making full use of all the bitstream
parsing options, but unable to cope with extended elements andi&atekbpments. It uses 8 bit
LBL encoding.
MapTK is quite a remarkable piece of software ; it produbtS files from a text file and handles
extended elements,using 8 bit LBL encoding. It is struggbrigeep up to date but its IMG files are
almost text book, ‘ gangriindlich’ ie methodical.
By far the ‘neatest’ ,using fewer subdivisions and most up & datmkgmap created by a team of
programmers ; its IMGs are a delight to parse and highymetended.

6 bit LBL encoding is used.

None of them can parse DEM subfiles.

NT POls

The structure of NT pois is basically understood and similaotoNT pois. The only difference is
the data streams following the LBL / lat/lon blocks.

Such data streant® not have fixed lengtt@d Garmin is employing several tricks to define the
various lengths - more information on

Www.pinns.co.uk/osm/garmin.html.

Exploring IMG Format 50

Extra POI data stream

This consists of 3 or more bytes containing the ID as found MRafile - the maximum ID seems

to be &FFFF.
Each of the 3 bytes include masks the purpose of which isewat dlhis also makes it very hard to

establish the extra poi ID.

IMG2TYP can display all IDs

Exploring IMG Format 51

bitstream, 28, 32, 33, 34, 36
cgpsmapper, 13, 36
Coordinates, 27

DEM, 1, 49

extended types, 17, 23
extra poi, 51

FID, 39

Garmin 1

GMT, 5

header, 9

IMG, 1,5, 7, 10

IMG Explorer, 5
IMG2TYP, 2, 6, 51
LBL, 18

left_shift, 35

Locked, 17

MapTK, 50

Mechalas, 5, 16, 21, 22
mkgmap, 50

NET, 1, 7, 18, 20, 21, 24, 30, 42
NOD, 7, 21, 30, 42, 43, 44, 46, 47
NT pois, 50

PID, 39

POI, 17, 18, 20, 22

polygons, 7, 8, 10, 12, 16, 24, 36
Polygons, 10, 26

POLYLINES, 24

RGN, 1, 7, 10, 11, 12
Subdivisions, 9, 13

TRE, 1, 10

TRES, 41

types 0 x 100+, 25, 26

Exploring IMG Format

52

